ALAGAPPA UNIVERSITY – AFFILIATED COLLEGES B. Sc., ARTIFICIAL INTELLIGENCE ALLIED PAPERS OFFERED

[For the candidates admitted from the Academic Year 2023 – 2024 onwards]

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC) Karaikudi -630 003, Tamil Nadu.

List of Chairperson and Members of the BOS in B.Sc., Artificial Intelligence (Affiliated Colleges)

S. No.	Name and Address	Designation
1	Dr. A. PADMAPRIYA Professor, Department of Computer Science, Alagappa University, Karaikudi	Chairperson
2	Dr. P. ESWARAN Assistant Professor Department of Computer Science Alagappa University, Karaikudi.	Member
3	Dr. R. INDRA Associate Professor Department of Computer Science Government Arts College for Women, Sivagangai.	Member
4	Dr. A. ASHOK KUMAR Associate Professor Department of Computer Science Alagappa Govt. Arts College, Karaikudi	Member
5	Mr. K. CHELLATHURAI Assistant Professor Department of Computer Science Raja Doraisingam Govt. Arts College, Sivagangai.	Member
6	Dr. E. GEORGE DHARMA PRAKASH RAJ Associate Professor Department of Computer Science & Applications Bharathidasan University Khajamalai Campus, Tiruchirappalli.	Member
7	Mr. R. VIJAYARAJAN, Project Manager, Hogarth worldwide, Chennai	Industry Expert
8	Dr. Mu. ANNALAKSHMI Assistant Professor (Guest) Kalaignar Karunanidhi Government Arts College for Women (Autonomous), Pudukkottai	Alumnus/ Alumna
9	Dr. V. SIVAKUMAR The Director Curriculum Design & Development Cell, Alagappa University, Karaikudi	Ex-Officio Member

ALAGAPPA UNIVERSITY, KARAIKUDI NEW SYLLABUS UNDER CBCS PATTERN (w.e.f. 2023-24) FOR AFFILIATED COLLEGES

ALLIED COURSES OFFERED FOR OTHER DEPARTMENTS

(B. Sc (CS) / B. Sc (IT) / BCA / B. Voc (SD) / Maths / Electronics / Software / Commerce)

Name of the Programme	Semester	Allied	T / P	Discipline to be selected
	1	Digital Logic Fundamentals	Т	
		Digital Electronics Lab	Р	
	2	Data Science & Analytics	Т	B. Sc (CS) / B. Sc
B. Sc (Artificial Intelligence)		SPSS Lab	Р	(II) / BCA / B. Voc (SD) / Maths /
offering other	3	R Programming	Т	Electronics /
departments		R Programming Lab	Р	Software / Commerce
	4	Machine Learning Basics	Т	
		Machine Learning Lab	Р	

Subject Code		Category		Т				rs	Marks			
	Subject Name		L		Р	S	Credits	Inst. Hou	CIA	Externa I	Total	
23BAIA1	DIGITAL LOGIC FUNDAMENTALS	Elective	3	-	-	-	3	3	25	75	100	

Course Objectives

- 1. To introduce the fundamentals of number systems and Digital logic.
- 2. To understand Boolean algebra, conversions and Binary arithmetic operations.
- 3. To get exposure to combinational logic circuits.
- 4. To understand the concept of sequential logic and flipflops
- 5. To study the design of counters and understand the memory types.

	Details
UNIT I	NUMBER SYSTEMS AND DIGITAL LOGIC
	Number Systems and Codes: Number System – Base Conversion – Binary Codes –
	Code Conversion. Digital Logic: Logic Gates – Truth Tables – Universal Gates.
UNIT II	BOOLEAN ALGEBRA
	Boolean Algebra: Laws and Theorems – SOP, POS Methods – Simplification of
	Boolean Functions – Using Theorems, K-Map, Prime – Implicant Method – Binary
	Arithmetic: Binary Addition – Subtraction – Various Representations of Binary
	Numbers – Arithmetic Building Blocks – Adder – Subtractor.
UNIT III	COMBINATIONAL LOGIC
	Combinational Logic: Multiplexers – Demultiplexers – Decoders – Encoders – Code
	Converters – Parity Generators and Checkers.
UNIT IV	SEQUENTIAL LOGIC
	Sequential Logic: RS, JK, D, and T Flip-Flops – Master-Slave Flip-Flops. Registers:
	Shift Registers – Types of Shift Registers.
UNIT V	COUNTERS AND MEMORY
	Counters: Asynchronous and Synchronous Counters - Ripple, Mod, Up-Down
	Counters- Ring Counters. Memory: Basic Terms and Ideas -Types of ROMs -
	Types of RAMs.
Textbooks	

1. D.P.Leach and A.P.Malvino, Digital Principles and Applications – TMH – Fifth Edition – 2002.

Reference Books

- 1. V.Rajaraman and T.Radhakrishnan, Digital Computer Design, Prentice Hall of India, 2001
- 2. M. Moris Mano, Digital Logic and Computer Design, PHI, 2001.
- 3. T.C.Bartee, Digital Computer Fundamentals, 6th Edition, Tata McGraw Hill, 1991.

Course Outcomes

- 1. Identify the logic gates and their functionality.
- 2. Perform number conversions from one system to another system.
- 3. Understand the functions of combinational circuits.
- 4. Perform number conversions.

5. Perform Counter design and learn its operations.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	M	S	M	M	S
CO2	S	S	S	M	S	S	М	S	S	S
CO3	S	S	S	S	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping with Programme Outcomes

 $\begin{array}{l} PO-Programme \ Outcome, \ CO-Course \ outcome \\ S-Strong, \ M-Medium, \ L-Low \end{array}$

CC		Allied	L	Τ	Р	С	H/W
Course cod	e: 23BAIAP1	DIGITAL ELECTRONICS LAB	2	-	-	2	2
Objective	• To Understa	and the Digital Electronics Practically					
S	• To know ho	w to solve gates and other functions.					
 AND Unive Unive Verifi Laws Verifi Sum e Study Study Study Study Study Study Half a 	OR and NOT C ersality of NANI cation of Boole of Products usin pinary parallel a ter using IC 747 of RS, D, T and of Encoder & I of Multiplexer and Full Adder u	Gate using Truth Table D & NOR gates. ean laws using NAND gates (Associative, an laws using NOR gates (Associative, Comr g NAND gates and Product of Sums using Ne dder and Subtractor IC 7483 3 1 JK Flip-Flops with IC's. Decoder. & De-Multiplexer. Ising Simple & NAND Gates. tor using Simple & NAND Gates.	Comn nutativ OR Ga	nutat e & ∃ tes.	ive Disti	& Di ibutiv	stributive ve Laws)
Outcomes	StudentsStudents	s were able to solve simple gate functions. s were able to solve and Design circuits using	e IC.				

Allied		THEORY – 2A	THEORY – 2A L T				H/W	
Course cod	e: 23BAIA	DATA SCIENCE AND ANALYTICS	3	-	-	3	3	
	2							
Objectives	• Prepare	e professionals conversant with current and adv	anced	tech	nolo	gical	tools to	
	carry o	ut Investigation, analysis and synthesis by iden	tifying	g var	ious	comp	outer	
	oriente	d solutions.						
	• To dev	elop positive attitude and skills which enable th	nem to	bec	ome	a mu	lti facet	
	persona	ality.						
	 To mal 	te them aware of effective machine learning an	d Arti	ficia	l Inte	elliger	nce	
	based o	based data analytics and inference required for Industrial Application						
	Introduction to Data Science - Evolution of Data Science - Data Science Roles -							
Unit I	Stages in a I	Data Science Project – Applications of Data S	Scienc	e in	vari	ous f	ields –	
	Data Security Issues.							
	Data Collect	ion and Data Pre-Processing Data Collection	on Stra	ateg	ies -	- Dat	a Pre-	
Unit II	Processing C	verview - Data Cleaning - Data Integration a	and Tr	ansf	orma	ation	– Data	
	Reduction –	Data Discretization.						
	Exploratory	Data Analytics Descriptive Statistics - M	lean,	Stan	dard	Dev	viation,	
Unit III	Skewness an	d Kurtosis – Box Plots – Pivot Table – Heat M	1ap –	Corr	elati	on St	atistics	
	– ANOVA.							
	Model Deve	lopment Simple and Multiple Regression -	Mod	el E	Evalu	ation	using	
Unit IV	Visualization	- Residual Plot - Distribution Plot - Po	olynon	nial	Reg	ressic	on and	
	Pipelines – M	leasures for In-sample Evaluation – Prediction	and D	ecis	ion N	/lakin	g.	
	Model Evalu	ation Generalization Error - Out-of-Sample E	Evalua	tion	Met	rics –	- Cross	
Unit V	Validation –	Overfitting - Under Fitting and Model Selec	tion –	Pre	dicti	on by	v using	
	Ridge Regres	sion – Testing Multiple Parameters by using G	rid Se	arch	•			
Text and R	eference Bool	XS:						
1. Jojo N	Aoolayil, "Sma	rter Decisions: The Intersection of IoT and Da	ta Scie	ence	', PA	CKT	,	
2016.								
2. Cathy	O'Neil and R	achel Schutt, "Doing Data Science", O'Reilly, 2	2015.					
3. David	I Dietrich, Bari	y Heller, Beibei Yang, "Data Science and Big	data A	naly	tics'	', EM	C	
2013					1		TOT	
4. Raj, P	ethuru, "Hand	book of Research on Cloud Infrastructures for	Big Da	ata A	Analy	tics",	, IGI	
Globa			• •					
Outcomes	On Comp	Science knowledge: Application of Data Scien	le to,	owle	daa	in voi		
	• Data fields	Science knowledge. Application of Data Scien		JWIC	uge	iii vai	lous	
	• Natu	e of Data Science: Understand the concise, pr	ecise a	and 1	igor	ous na	ature	
	of Da	ta Science.			C			
	Critic	eal thinking: Develop the skill to think critical	ly on a	bstr	act c	oncep	ots of	
	Data	Science.				-		
	Prob	em analysis: Develop the ability to analyze a p	proble	m lo	gical	ly an	d	
	dissec	t into micro-parts and thus resolving the proble	em to a	acces	ssible	e		
	components							

llied		PRACTICAL – 2B	L	T	Р	С	H/W			
Course cod	e: 23BAIA	SPSS LAB	-	-	2	2	2			
Objectives	• To in	roduce the basic knowledge of SPSS program	 ming f	 funda	ımer	ntals.				
3	• To in	part writing skill of SPSS programming to the	stude	nts a	nd so	olving	ç			
	proble	ms.				C	,			
	• To in	plement the basic concepts of SPSS								
Using SPS	SS implement t	ne following.								
1. N	1. Mean, Standard deviation, Variance.									
2. B	ar diagram, Li	ne diagram, Pie chart and Histogram.								
3. C	coefficient of c	prrelation.								
4. R	 Regression equation of X on Y. 									
5. R	egression equa	tion of Y on X.								
6. A	pplication of t	test for one sample problem.								
7. A	pplication of t	test for two sample problems.								
8. A	pplication of t	test for testing the significance of Correlation	Coeff	icien	t.					
9. C	ne-tailed and	Wo-tailed tests.								
10. A	pplication of a	nalysis of variance.								
Text and R	eference book	s:								
1. Jesus	Salcedo and K	eith McCormick. "SPSS Statistics for Data Au	nalvsis	and						
Visua	lization", Wile	y, June 2017.	J							
2. K. Ka	lyanaraman;H	areesh N. Ramanathan;P.N. Harikumar, "Stati	stical N	Meth	ods :	for				
Resea	rch: A Step by	Step Approach Using IBM SPSS", Atlantic,	Januar	y 20	21.					
Outcomes	After Cor	npleting this course, the students are able to:								
	• R	ead, understand, and trace the execution of pro	ograms	wri	ten i	n SPS	SS.			
	• W	rite the SPSS code for a given algorithm.	-							
1	• D	evelop the programs to implement the concep	s of Sl	PSS.						
l	• W	ork as a team player and strive for self-excelle	ence.							

Allied		THEORY – 3A	L	Τ	Р	С	H/W			
Course cod	e: 23BAIA	R PROGRAMMING	3	-	-	3	3			
	3					1				
Objectives	• Unders	stand the basics in R programming in terms of c	onstru	cts,	cont	rol				
	staten	nents, string functions								
	• Unders	stand the use of R for Big Data analytics	. 1							
	Apprece	chate and apply the R programming from a statis	stical p	persp	bectr	ve				
	Introduction	: Introducing to R – R Data Structures – Help	Funct	ions	in R	. – Ve	ctors –			
Unit I	Scalars – Declarations – Recycling – Common Vector Operations – Using all and any									
	- Vectorized operations - NA and NULL values - Filtering - Victoriesed if-then else -									
	Vector Eleme									
	Matrices : (Creating matrices – Matrix Operations – App	lying	Fun	ctior	is to	Matrix			
TT B CTT	Rows and O	- Adding and deleting rows and	colun	ns	- V	ector/	Matrix			
Unit II	Distinction -	- Avoiding Dimension Reduction – Higher Di	imensi	ona	arra	ays –	lists —			
	Creating list	s – General list operations – Accessing list	comp	oner	ns a	na va	nues –			
	apprying run	chois to lists – leculsive lists	tions	in fi		c 17	orging			
	Data Frames	- Applying functions to Data Frames - Factor	s and	m n Tabl	anne es –	S – II Facto	ors and			
	levels – Con	- Applying functions to Data Hames - Factor mon Functions used with factors - Working	with te	able	cs – s – (1 action Anther	factors			
	and table related functions – Control statements – Arithmetic and Roolean operators									
Unit III	and values – Default Values for arguments – Returning Boolean Values – Functions									
	are objects	- Environment and scope issues - Writing	Unst	airs	_ 1	Recur	sion –			
	Replacement	t functions – Tools for Composing function co	de - 1	Math	n and	l Sim	ulation			
	in R.	1 0								
	Classes : S3	Classes - S4 Classes - Managing your objects	– Inp	ut/oi	itput	- acc	cessing			
T T •/ T T 7	keyboard an	d monitor - reading and writing files - acce	ssing	the i	inter	net –	String			
Unit IV	Manipulation	n – Graphics – Creating Graphs – Customizing	Graph	s – S	Savir	ng Gra	aphs to			
	files – Creati	ng Three-Dimensional plots.								
	Interfacing	R : Interfacing R to other languages – Para	llel R	- E	Basic	Stati	stics –			
Unit V	Linear Mode	el – Generalized Linear models – Non-linear I	Model	s –	Tim	e Seri	ies and			
	Auto-Correla	ation – Clustering.								
Text Books	;:									
1. Norm	an Matloff, —	The Art of R Programming: A Tour of Statistic	al Sof	twar	e De	sign,	No			
Starch	n Press, 2011.									
2. Jared	P. Lander, —I	R for Everyone: Advanced Analytics and Graph	ics, A	ddis	on-V	Vesley	У			
Data	& Analytics Se	eries, 2013.								
Books for I	Reference:		-							
I. Mark	Gardner, —Be	eginning R – The Statistical Programming Lang	uagel,	Wi	ley, i	2013.				
2. Rober	rt Knell, —Intr	oductory R: A Beginner's Guide to Data Visua	lisatio	n, Si	tatist	ncal	1			
Analy	vsis and progra	mming in KI, Amazon Digital South Asia Servi	ices In	c, 20	JI3.	K1cha	ırd			
Cotto	n(2013). Learn	ling K, U'Kelliy Media		ia T						
5. Garre	3. Garret Grolemund (2014). Hands-on Programming with R. O'Reilly Media, Inc.									

4. Roger D.	Peng (2018). R Programming for Data Science. Lean Publishing.
Outcomes	 After completing this course the student will be able to Understand the basics in R programming in terms of constructs, control statements, string functions Understand the use of R for Big Data analytics Apply the R programming from a statistical perspective

Allied		PRACTICAL – 3B	L	T	P	С	H/W		
Course cod	e: 23BAIA P3	R PROGRAMMING LAB	-	-	2	2	2		
Objectives	• To pr	ovide Basic knowledge of R Programming	1	1	1	<u> </u>			
 Write a program to Check if a Number is Positive, Negative or Zero. Write a R Program to Make a Simple Calculator. Write a program to find Sum of Natural Numbers Using Recursion. Write a program to find Fibonacci Sequence Using Recursion in R. Write a program to implement R Program for the Factors of a Number. Write a program to Program to Add Two Vectors 									
6. Write	a program to]	Program to Add Two Vectors.							
7. Write	a function to l	Find Minimum and Maximum.							
8. Write	a program to S	Sort a Vector.							
9. Write	a R Program t	o Check for Leap Year.							
10. Write a program to multiply two Matrices.									
Outcomes	After Cor	npleting this course, the students are able to							
	• Get practical exposure on R								
	• Develop simple programs using R language.								

Allied		THEORY – 4A	L	T	Р	С	H/W		
Course cod	e: 23BAIA	MACHINE LEARNING BASICS	3	-	-	3	3		
	4								
Objectives	• To und	erstand the basics of Machine Learning							
	• To acq	uire knowledge about different Machine Learni	ng alg	oritl	ıms				
	Able to	get knowledge about problem solving using M	achin	e Le	arnii	ng			
	Introduction	: Machine Learning – Example of Machine	e Leai	ming	g Ap	plicat	tions.		
Unit I	Supervised	Learning: Learning a class examples, V	apnik	- 1	Ch	ervon	enkis		
	Dimension, Noise, Learning Multiple Classes, Regression								
	Decision T	ree Learning: Introduction, The Basic I	Decisio	on '	Tree	Lea	rning		
Unit II	II Algorithm, Hypothesis Space search in Decision tree Learning, Inductive bias in								
	decision tree Learning, Issues in decision tree Learning								
	Neural Net	works: Introduction, Neural network rep	resent	atio	ns,	perce	ptions,		
Unit III	Multilayer	networks and the Backpropagation Algor	rithm,	Re	emar	ks o	n the		
	Backpropagation Algorithm, Face Recognition								
	Clustering: Introduction, Mixture Densities, k-Means Clustering, Expectation-								
Unit IV	Maximizatio	n Algorithm, Mixtures of Latent Variable Mod	els, S	uper	vise	ed Learning			
	after Clustering, Spectral Clustering, Hierarchical Clustering								
	Bayesian Lo	earning: Introduction, Bayes Theorem, Baye	s The	oren	n an	d Co	ncept		
Unit V	Learning, B	ayes Optimal Classifier, Naïve Bayes Cla	ssifier	, B	ayes	ian E	Belief		
	Networks, Tl	ne EM Algorithm							
Text Book:									
1. Mitch	ell M., T., Ma	chine Learning, McGraw Hill (1997) 1stEdition	l .						
2. Alpay	din E., Introdu	ction to Machine Learning, MIT Press (2014)	BrdEdi	tion					
``									
Books for I	Reference:								
1. Bisho	p M., C., Patte	rn Recognition and Machine Learning, Springe	r-Verl	ag (2011)			
2ndEo	lition.		-						
2. Michi	e D., Spiegelh	alter J. D., Taylor C. C., Campbell, J., Machine	Learn	ung,	Net	iral an	d		
Statis	tical Classifica	tion. Overseas Press (1994)							
Outcomes	• Stude	nts will understand the basic concepts of Machi	ne Le	arni	ng ai	nd its			
	tound	ations.		r					
	• Stude	nts will be able to apply basic principles of Mac	chine	Lear	nıng	ın			
	soluti	ons that require problem solving and learning.							

Allied			PRACTICAL – 4B	L	T	Р	С	H/W	
Course code:		23BAIA	MACHINE LEARNING LAB	-	-	2	2	2	
011		P4							
• To get the practical exposures of implementation of machine learning						ng			
algorithms									
1.	For a given set of training data examples stored in a .CSV file, implement and demonstrate								
	the Candidate-Elimination algorithm to output a description of the set of all hypotheses								
	consistent with the training examples								
2.	Implement and demonstrate the FIND-S algorithm for finding the hypothesis based on a								
	given set of training data samples								
3.	3. Write a program to demonstrate the working of the decision tree based ID3 algorithm								
4.	Write a	rite a python program to implement K-Means clustering Algorithm							
5.	Build a	an Artificial Neural Network by implementing the Backpropagation algorithm and test							
	the same using appropriate data sets								
6.	Write a program to implement the naïve Bayesian classifier for a sample training data set								
stored as a .CSV file									
Outcomes		After Co	After Completing this course, the students are able to:						
		• U	nderstand the implementation procedures for th	ie mac	hine	lear	ming		
		al	gorithms.						
		• D	esign Python programs for various Learning alg	gorith	ms				