Subject Code	Subject Name	Category	L	T	P	S	Credits		Marks	
								CIA	External	Total
23BCAA1	DIGITAL LOGIC	Elective	3	-	-	-	3	25	75	100
	FUNDAMENTALS	Course 1								
	Cou	ırse Object	ive							
CO1	To introduce the fundamenta									
CO2	To understand Boolean algebra, conversions and Binary arithmetic operations.									
CO3	To get exposure to combinational logic circuits.									
CO4	To understand the concept of	f sequential	logi	c ar	nd fl	ipfl	ops			
CO5	To study the design of count	ters and unde	ersta	nd	the	men	nory types.	•		
									No. of Hours	
UNIT I	NUMBER SYSTEMS AND DIGITAL LOGIC									
	Number Systems and Codes: Number System – Base Conversion – Binary Codes –									
	Code Conversion. Digital Logic: Logic Gates – Truth Tables – Universal Gates.								15	
UNIT II	BOOLEAN ALGEBRA									
	Boolean Algebra: Laws and Theorems – SOP, POS Methods – Simplification of Boolean Functions – Using Theorems, K-Map, Prime – Implicant Method – Binary								15	
	Arithmetic: Binary Additio									
	Numbers – Arithmetic Build							itations	or Billary	
UNIT III	COMBINATIONAL LOG									
	Combinational Logic: Mul		Dem	ult	iple	xers	- Decode	ers – E	Encoders –	
	Code Converters – Parity Go									15
UNIT IV	SEQUENTIAL LOGIC									
	Sequential Logic: RS, JK						- Master-S	Slave	Flip-Flops.	15
	Registers: Shift Registers –		ft R	egi	sters	5.				
UNIT V	COUNTERS AND MEMO									15
	Counters: Asynchronous a									
	Counters— Ring Counters.	Memory: Ba	1S1C	Te	rms	and	l Ideas –T	ypes o	t ROMs –	
	Types of RAMs.							Tak	al Hours	75
<u> </u>		4					Т			
) On1 (Course Ou							Progr	amme Out	come
•	on of this course, students v							D/	11 DO2 DO) <i>5</i>
	gic gates and their functional								01, PO3,PC	
Perform numb	Perform number conversions from one system to another system. PO2, PO3, PO6, PO							PO7		

	Course Outcome	Programme Outcome
CO	On completion of this course, students will	
1	Identify the logic gates and their functionality.	PO1, PO3,PO5
2	Perform number conversions from one system to another system.	PO2, PO3, PO6, PO7
3	Understand the functions of combinational circuits.	PO3, PO4, PO7
4	Perform number conversions.	PO4, PO5, PO6
5	Perform Counter design and learn its operations.	PO7, PO8
	Text Book	
1	D.P.Leach and A.P.Malvino, Digital Principles and Applications – TMH – Fift	h Edition – 2002.
	Reference Books	
1.	V.Rajaraman and T.Radhakrishnan, Digital Computer Design, Prentice Hall of	f India, 2001
2.	M. Moris Mano, Digital Logic and Computer Design, PHI, 2001.	
j	T.C.Bartee, Digital Computer Fundamentals, 6th Edition, Tata McGraw Hill, 1	991.
	1	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	S	S	S	S	S	M	S	M
CO2	S	S	S	M	S	S	M	S
CO3	S	S	S	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S

 $\begin{array}{l} PO-Programme\ Outcome,\ CO-Course\ outcome \\ S-Strong,\ M-Medium,\ L-Low \end{array}$

Subject Code	Subject Name	Catego	L	T	P	S	Credits			
		ry						CIA	External	Total
23BCAAP1	Digital Principles & Computer Organization -LAB	Allied Lab	-	-	2	-	2	25	75	100

Course Objectives:

- To Understand the Digital Electronics Practically
 To know how to solve gates and other functions.
- 3. To create Boolean laws.
- 4. Be able to work with flip-flops.5. Be able to build multiplexer and de-multiplexer.

	LAB EXERCISES	Required				
	LAD EAERCISES	_				
13 FD 6 D	Diomo m m m	Hours				
	ndNOTGateusingTruthTable	60				
	tyofNAND&NORgates.					
Verificatio	n ofBooleanlawsusingNANDgates(AssociativeCommutative&DistributiveLaws)					
VerifyDe-N	Morganstheorem					
Verificatio	nofBooleanlawsusingNORgates(Associative,Commutative&DistributiveLaws)					
SumofPro	ductsusingNANDgatesandProductofSums usingNORGates.					
	parall eladderandSubtractorIC7483					
Counterus	•					
StudyofRS,D,TandJKFlip-FlopswithIC's.						
	ncoder&Decoder.					
	ultiplexer&De-Multiplexer.					
	Full Add eru sin gSimple&NANDGates.					
1	ullSubtractorusingSimple&NANDGates.					
	and the tracting of the property of the proper					
	Course Outcomes					
	On completion of this course, students will					
CO1	Demonstrate the understanding of digital electronics					
CO2	Identify the problem and solve using gates and other functions.					
CO3	Identify suitable programming Boolean laws.					
CO4	Learners can be work with flip-flops.					
CO5	Develop multiplexer and de-multiplexer.					

Mapping with Programme Outcomes:

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	2	2	3	2
CO2	2	1	3	2	ı	2
CO3	3	3	1	1	1	2
CO4	2	3	3	1	-	1
CO5	3	2	3	1	1	-
Weightage of course	12	11	12	7	5	7
contributed to each PSO						

S-Strong-3 M-Medium-2 L-Low-1

								Inst.		Marks	
Subject Code	Subject Name	Category	L	L T P		S	Credits	Hours	CIA	External	Total
23BCAA2	Resource Management Techniques	Allied	3	-	-	-	3	3	25	75	100
		Cours	e Obj	ectiv	'e						•
CO 1	Describe the fundamental	concepts of o	perati	ions r	esea	rch	and linear	r prograi	nming	concepts.	
CO 2	Understand the mathemati	cal formulati	on an	d opt	imali	ity 1	test.				
CO 3	Describe the concept of transhipment problem and assignment problem.										
CO 4	Classify the sequencing problems.										
CO 5	Demonstrate the use of network scheduling by PERT/CPM.										
	Details									Н	lo. of
UNIT I	Basics of Operations Research: Introduction – Scope of Operations Research – Phases of Operations Research - Linear Programming: Introduction – Formulation of LP Problems – Graphical Method: Procedure for Solving LPP by Graphical Method.									6	
UNIT II	Transportation Problems Optimal Solution – North-Vogel's Approximation Me	West Corner	Rule	- Le	east (Cos	t or Matri	ix Minin			6
UNIT III	Transhipment and Assig Assignment Problem – Problem-Maximization in	nment Prol Hungarian N	olems Metho	: Int	rodu	ctio	n – Tran	shipmen			6
UNIT IV	Sequencing Problems: Introduction – Definition – Terminology and Notations – Principal Assumptions – Type I: Problems with n Jobs through Two Machines – Type II: Processing n Jobs through Three Machines A, B, C – Type III: Problems with n Jobs and k Machines – Type IV: Problems with 2 Jobs through k Machines.									pe II:	6
	Network Scheduling by PERT/CPM: Introduction - Basic Terms - Common Errors - Rules of Network Construction - Numbering the Events (Fulkerson's Rule) - Time Analysis – Critical Path Method (CPM).										6
UNIT V				ng u	ic L	· C11	(1	3011 3 10	tuic) -	Time	

	Course Outcomes	Programme Outcome
CO	Upon completion of the course the students would be Able to:	
CO 1	Remember the fundamental concepts of operations research and linear programming concepts.	PO1, PO6
CO 2	Understand the mathematical formulation and optimality test.	PO2
CO 3	Apply the concept of transhipment problem and assignment problem	PO4, PO7
CO 4	Analyze the sequencing problems.	PO6
CO 5	Understand the use of network scheduling by PERT/CPM.	PO7, PO8

	Text Book									
1	S.D. Sharma, Operations Research (Theory, Method & Applications) - Kedar Nath Ram Nath									
	& Co – 1997.									
	Reference Books									
1.	Hamdy A. Taha, Operations Research- An Introduction, Pearson Education, 10 th Edition, 2019.									
2	Frederick S. Hillier, Gerald J. Lieberman et al., Introduction to operations Research, 11 th									
	Edition, TATA McGraw Hill, 2021									
	Web Resources									
1.	https://www.mooc-list.com/tags/operations-research									

S-Strong-3 M-Medium-2L-Low-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

								Inst.		Marks	
Code	Subject Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
23BCAA P2	Resource Management Techniques Lab (Using C/C++/Python)	Allied Lab	-	-	2	-	2	2	25	75	100
CO.1	D 1 4 1	Cour)bjec	tive						
CO1	Describe the linear programm										
CO2	Understand the basic function				ble r	egioi	1.				
CO3	Describe the concept of north										
CO4	Classify the Vogel's approximately	mation rule	and	assig	nmer	nt pro	blem.				
CO5	CO5 Demonstrate the job sequencing problem and network scheduling by PERT/CPM.										
S. No		List of Lab	Pro	grar	ns					No. of H	lours
1	Write a program to formulate	the Linear F	rogr	amm	ing N	Лode	1			30	
2	Write a Program to represent the feasible region graphically										
3	Write a program to Implement the North-West Corner Rule										
4	Write a program to implement the Vogel's Approximation method										
5	Write a program to implement the assignment problem										
6	Write a program to implement the Hungarian Method										
7	Write a program to implement	Job sequen	cing	Prob	lem						
8	Write a program to implement	the Networ	k Sc	hedu	ling	by PI	ERT/CPM	[
		urse Outco								Programme Outcome	
CO	Upon completion of the cour			vould	be a	ble to	0:				
CO1	Remember the linear program	·								PO1, PO	6
CO 2	Understand the programming	•			•		feasible r	egion		PO2	
CO 3	Apply the programming cond									PO4, PO	7
CO 4	Analyze the Vogel's approximately	mation rule	and	assig	nmei	nt pro	blem.			PO6	
CO 5	Know the job sequencing pro	blem and n	etwo	rk sc	hedu	ling	by PERT/	CPM.		PO7, PO	8
				Book							
	S.D. Sharma, Operations Rese 1997.	`				Appl	ications)	- Kedar	Nath I	Ram Nath	& Co –
1	Hamilia A. Tala O C P.	Refe				D -	D 1	_4: 1 <u> </u>	th 17: 11:	in 2010	
	Hamdy A. Taha, Operations R									•	
	2. Frederick S. Hillier, Gerald J. Lieberman et al., Introduction to operations Research, 11 th Edition, TATA McGraw Hill, 2021									n,	
1	1.0 // 12 // 12			sour							
1.	https://www.mooc-list.com/t	ags/operatio	ns-re	esear	<u>ch</u>						

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

S-Strong-3 M-Medium-2L-Low-1

Illustration for B.C.A. Allied Paper II Year – Semester – III & IV

Cl-:4								T4		Marks	
Subject Code	Subject Name	Category	L	T	P	S	Credits	Inst. Hours	CIA	External	Total
23BCAA3	Discrete Mathematics	Allied	3	-	-	-	3	3	25	75	100
		Cours	e Obj	ectiv	'e						1
CO 1	Describe the fundamental con-	cepts of set t	heory	, func	ctions	s an	d relation	S.			
CO 2	Understand the mathematical	formulation,	Cond	lition	al Sta	ater	nents, Ato	mic and	Comp	ound State	ments.
CO 3	Describe the concept and Prin	ciples of No	rmal I	Forms	s, Th	eor	y of Infer	ence.			
CO 4	Classify the insights of graph theory.										
CO 5	Demonstrate the trees and Boolean algebra.										
UNIT	Details									lo. of Iours	
UNIT I	Fundamental Structures:- Products, Power Sets, Fini Inverses, Composition. Rel Relations.	te and Infi	nite S	Sets.	Fur	ıcti	ons:- Su	rjections	s, Inje	rtesian ctions,	6
UNIT II	Logic:- TF Statements, Con Conditional Statements, Ator Truth Table, Tautology, Tauto	nic and Con	npoun	d Sta	ateme	ents	s, Well fo	rmed Fo	ormulae	e, The	6
UNIT III	Normal Forms:- Principles Quantifiers, Valid Formulae a	of Normal	Form	s, Tł	neory	of	f Inferenc	e, Open	State	ments,	6
UNIT IV	Graph Theory:- Definition, Graph – Representation of a G					phi	sm, Comp	olete Gra	aph, Bi	partite	6
UNIT V	Trees: Spanning Tree – Kri Boolean Algebra: - Boolean						gorithm, I	Dijkstra'	s Algo	rithm,	6
									Tot	tal	30

	Course Outcomes	Programme Outcome					
CO	Upon completion of the course the students would be Able to:						
CO 1	Remember the fundamental concepts of set theory, functions and relations.	PO1, PO6					
CO 2	Understand the mathematical formulation Conditional Statements, Atomic and Compound Statements	PO2					
CO 3	1 1 , , ,						
CO 4	4 Analyze and Classify the insights of graph theory.						
CO 5	Understand the use trees and Boolean algebra.	PO7, PO8					
	Text Book						
1	Jean-Paul Trembly & Manohar, R. (2017). Discrete Mathematics Structures with Computer Science. Tata Mc Graw-Hill.	h Applications to					
	Reference Books						
1.	Venkataraman, M.K., Sridharan, N., & Chandrasekaran, N. (2009). <i>Discrete Mathema</i> National Publishing co.	atics.					
	Web Resources						
1.	https://mathworld.wolfram.com/DiscreteMathematics.html						

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

S-Strong-3 M-Medium-2L-Low-1

								Inst.		Marks	
Code	Subject Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
23BCAA P3	Excel & C++ Lab for Discrete Mathematics	Allied Lab	-	-	2	-	2	2	25	75	100
		Cour									
CO1	To impart the knowledge abou	t solving L	ogica	ıl pro	blem	S					
CO2	Understand and create truth t	able using s	prea	dshee	ets.						
CO3	Understand and create spread	sheets for c	lemo	rgan'	s the	oren	1.				
CO4	Classify the various set opera	tions.									
CO5	Demonstrate and implement	prim's algo	rithm	ıs.							
S. No		List of Lab	Pro	gran	ns					No. of H	lours
1	Create a truth table using spreadsheet for AND, OR and NOT functions. 30										
2	Create a truth table using spreadsheet for XOR of two variables, using your spreadsheet's AND, OR, and NOT functions to calculate the truth value.										
3	Create a truth table, using your spreadsheet's logical functions, for the expression: $((P \land 7Q) \lor (7P \land Q))$.										
4	Create a truth table using your spreadsheet for demorgan's theorem.										
5	Create a truth table using spreadsheet to check whether the given expression is tautology or not $(P \land Q) \lor (7P \land Q) \lor (P \land 7Q) \lor (7P \land 7Q)$										
6	Write a C++ Program to im difference, symmetric difference		ariou	s set	oper	atior	ns (union,	intersec	ction,		
7	Write a C++ Program to find	power set o	of a s	et wi	th siz	ze n.					
8	Write a C++ program to per		ing c	pera	tion:						
	a) is the given relation is refleb) is the given relation is sym		is the	oive	n rel	ation	is Transi	tive?			
9	Write C++ Program to imple					ation	113 1141131	uve.			
10	Write a C++ Program to chec	k whether	a giv	en gr	aph i	s bip	artite or n	ot.			
	Co	urse Outco	mes							Program Outco	
CO	Upon completion of the cours	se the stude	nts w	ould	be a	ble to	o:				
CO1	Remember the truth table usi	ng spreadsh	eets.							PO1, PO	6
CO 2	Understand the programming problems.	basic funct	tion a	and k	nowl	edge	about sol	ving Log	gical	PO2	
CO 3	Apply the programming conc	ept of sprea	adshe	ets f	or de	morg	gan's theo	rem.		PO4, PO	7
CO 4	Analyze the various set opera	tions and p	roble	m.						PO6	
CO 5	Know to demonstrate and im	plement pri	m's a	algor	ithms	S				PO7, PO	8
				Book							
1	Jean-Paul Trembly & Mano Computer Science. Tata Mc	Graw-Hill.				J ath	ematics S	tructures	with	Application	ons to
		Refe	renc	e Bo	oks						

	Venkataraman, M.K., Sridharan, N., & Chandrasekaran, N. (2009). <i>Discrete Mathematics</i> . National Publishing co.									
	Web Resources									
1.	https://mathworld.wolfram.com/DiscreteMathematics.html									

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

Strong-3 M-Medium-2 L-Low-1

Subject								Inst.		Marks	
Subject Code	Subject Name	Category	L	T	P	S	Credits	Hours	CIA	Externa	Total
23BCAA4	STATISTICS METHODS AND ITS APPLICATIONS	Allied	3	-	-	-	3	3	25	75	100
		Cours						'			•
CO 1	Describe the fundamental con-	cepts of colle	ecting	and j	prese	nti	ng statisti	cal data.			
CO 2	Understand the measures of co	entral tenden	cy an	d dis _l	persi	on					
CO 3	Describe the concept and Mea	sures of Ske	wness	s, Ku	rtosis	s an	d Momen	ts.			
CO 4	Classify the insights of correlation and Concurrent deviation method.										
CO 5	Demonstrate the regression.										
UNIT	Details									No. of Hours	
UNIT I	Collection and Presentation of Statistical Data: Nature, Scope and Limitations of Statistics – Data sources – Methods of collection of statistical data – Census – Sample Survey – Measurement of Scales – Nominal, Ordinal, Interval and Ratio scales – Classification and Tabulation – Formation of frequency distribution – Cumulative frequency distribution – Diagrammatic and Graphical representation of Data.								ample ales –	6	
UNIT II	Measures of Central Tend Geometric mean and Harmon Deciles and Percentiles – Abs deviation – Mean deviation - S	lency and nic mean for olute and re	Dispe raw lative	ersion and g meas	n: A group sures	rith oed of	nmetic mo data – Pr Dispersio	ean, Me roperties n – Ran	– Qua ge – Q	artiles, uartile	6
UNIT III	Measures of Skewness, K Pearson's, Bowley's and Kel Moments – Relation betwee Kurtosis 15 based on Moment	urtosis and ly's coefficion n raw and	Monent of	ment Ske	s: D wnes	efi s –	nition – Moment	Calculat s – Raw	tion of	Karl Central	6
UNIT IV	Kurtosis 15 based on Moments. Correlation: Definition of Correlation – Types of correlation – Methods of correlation – Scatter diagram – Karl Pearson's correlation coefficient – Spearman's rank correlation coefficient – Properties – Concurrent deviation method – Correlation coefficient for ungrouped and grouped bivariate data.								elation	6	
UNIT V	Regression: Meaning of Regression coefficients for un coefficient – Finding the two unknown values of X and Y.	egression – grouped and	grou	ped b	ivari	ate	data – Pr	operties	of regr	ession	6
									Tot	tal	30

	Course Outcomes						
CO	Upon completion of the course the students would be Able to:						
CO 1	Remember the fundamental concepts of collecting and presenting statistical data.	PO1, PO6					
CO 2	Understand the measures of central tendency and dispersion.	PO2					
CO 3	Describe the concept and and Measures of Skewness, Kurtosis and Moments.	PO4, PO7					
CO 4	Analyze the correlation and Concurrent deviation method.	PO6					
CO 5	Understand the use of regression.	PO7, PO8					

	Text Book
1	Gupta S. P (2002), Statistical Methods, Sultan Chand and Sons, New Delhi.
2	Gupta S. C and Kapoor V. K, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi.
3	Goon A. M, Gupta M. K and Dasgupta B (2008), Fundamentals of Statistics, (Vol I), World Press Ltd, Calcutta.
4	Bhat B. R, Srivenkataramana T and Madhava Rao K. S (1996), Statistics a Beginner's Text, (Vol. – I), New Age International Publishers, New Delhi.
	Reference Books
1.	Hogg R. V and Craig A. T (2006), Introduction to Mathematical Statistics, MacMillan, London
2	Saxena H. C, Elementary Statistics, Sultan Chand and Sons, New Delhi.
3	Sancheti D. C and V.K Kapoor, Statistics, Sultan Chand and Sons, New Delhi.
4	Agarwal B. L (1996), Basic Statistics (Third Edition), New Age International Publishers, New Delhi.
	Web Resources
1.	https://www.tutorialspoint.com/statistics/data_collection.htm
2	https://www.surveysystem.com/correlation.htm
3	https://www.investopedia.com/terms/r/regression.asp
4	https://course-notes.org/statistics/sampling_theory

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

Strong-3 M-Medium-2 L-Low-1

								Inat		Marks	
Code	Subject Name	Category	L	T	P	S	Credits	Inst. Hours	CIA	External	Total
23BCAA P4	Computer-Oriented Statistical Methods Lab	Allied Lab	-	-	2	-	2	2	25	75	100
		Cour									
CO1	To introduce basic statistical programming Language thro		r the	anal	ysis (of sig	gnificance	differen	ices in	data using	g C++
CO2	To introduce various statistic	al method s	uch a	as reg	ressi	on, S	Skewness,	etc.			
CO3	Understand and perform corr	elation coef	ficie	nt.							
CO4	Classify the linear regression										
CO5	Demonstrate and compute m	ulti regressi	on.								
S. No		List of Lab) Pro	gran	ns					No. of H	lours
1	Write a C++ program to exec									30	
2	Write a C++ program to Ci				erfor	m th	ie operati	ons addi	ition,		
2	inverse, transpose, and multi- Write a C++ program to Execution				ation			an mad			
3	Write a C++ program to Exe										
-	variance, and covariance.	Accute the	Stati	istica	i iui	Ctioi	is. Stande	ild Devi	ation,		
5	Write a C++ program to dray	v the skewn	ess.								
6	Write a C++ program to obta			n coe	fficie	ent					
7	Write a C++ program to perf	orm the bin	omia	l and	norr	nal d	istribution	on the	data.		
8	Write a C++ program to Perf										
9	Write a C++ program to Con	-		-							
10	Write a C++ program to Con	npute the M	ulti F	Regre	ssior	۱.					
		urse Outco								Program Outco	
CO	Upon completion of the cour										
CO1	Students will able to understa									PO1, PO	6
CO 2	Students will able to program	ming with	appli	catio	n of S	Statis	stical metl	nods		PO2	
CO 3	Apply and perform correlation									PO4, PO	7
CO 4 CO 5	Analyze the various linear re		ogran	n.						PO6	0
CO 3	Know to compute multi regre		Covt	Book	,					PO7, PO	8
1	Goyal, M. (2008). <i>Computer-l</i> Ltd.					ical T	Technique	s. Laxmi	i Publi	cations,	
2	Ltd. Gupta, S. C., & Kapoor, V. K. & Sons.	(2020). Fu	ndan	ıenta	ls of	Math	nematical.	Sultan (Chand	statistics	
	cc Bolls.	Refe	renc	e Bo	nks						
	Walpole, R. E., Myers, R. H., Engineers and Scientists (Vol.	Myers, S. L	, &	Ye, I	C. (19		Probabil	ity and S	tatisti	cs for	
		Wel	b Res	sour	es						
1.	https://www.tutorialspoint.com	n/statistics/o	lata_	colle	ction	.htm					
2	https://www.surveysystem.com	n/correlatio	n.htn	<u>n</u>							

Subject	Subject Name	Category	L	Т	P	S	Credits	Inst.		Marks	
Code								Hours	CIA	Externa	Total
23BCAA	5 Graph Theory and its Applications	EC - 4 Allied	3	-	_	-	3	3	25	75	100
1.01					bject						
LO1	Definition of Graph, sub				-		ee and alge	ebraic ope	erations.		
LO2	Connected graphs, weight				_						
LO3	Trees: Characterizations,	spanning tre	e, m	inimu	ım sp	anni	ng trees				
LO4	Eulerian and Hamiltonian	graphs: Ch	aract	erizat	tion, l	Vece	ssary and s	ufficient	conditio	ns	
LO5	Special classes of graphs:	Special classes of graphs: Bipartite graphs, line graphs, chordal graphs.									
UNIT			(Cont	ents						No. of Hours
UNIT I	INTRODUCTION: Grapaths, Circuits connected Trees- properties of Trees	ness- Comp	onen	its- E	uler	Grap	hs- Hamilt	tonian pa	ths and		15
UNIT II CONNECTIVITY AND PLANARITY: Introduction to circuits - cut set- properties of cut set- All cut sets -connectivity and separability - Network Flows - 1-Isomorphism - 2- Isomorphism- Combinatorial and Geometric graphs- Planar Graphs - Different representation of planar graph.											
UNIT III	COLORING AND DIRECTED GRAPH: Basics of Colouring & Chromatic number – Chromatic partitioning – Graph Colouring – four colour Problem Chromatic polynomial -								15		
UNIT IV	MATRIX REPRESENT graphs& Quotient Grap definitions and examples construct Spanning Trees & Kruskal's Algorithm.	hs, Transiti s), spanning	ive (Tre	Closu es of	ire d f Cor	igrap mect	oh, Euler's ed Relatio	s Path & ns, Prim	c Circu's Algo	it (only rithm to	15
UNIT V	APPLICATIONS OF Odirected Graph, - Graph with directed graph- Shor	vith n vertic	es an	d k c n dir	olour ected	s- Sl	nortest path	from on	e to mar	ny Cities	15
				Tot							75
,		Course (omes						I	gramme utcome
	On completion of this course			1	41	<u> </u>	1 1	1	11 17 1		
I	Γο Introduce the fundament graphs, Hamiltonian Paths Τ		_	•					uks, Eul	er PO	,PO6
CO2	Understanding the concept (somorphism and Combinate	s of Circui	ts, C	Cut s	et an				ork Flo	ws, PO2	2
CO3	Applying the concept of Col Covering Pattern and Euler Co	louring with Graphs.	Chr	omat	ic Nu					PO2	2,PO4
]	Analyzing the Various Conc Kruskals and Prims Algorith	ms, Connec	ted C	omp	onent	s.					I,PO6
٠	Implementation of an application with travelling sales person landshortest Path finding Problems	Problem, K	colou	r Pro	blem	with	n vertices				5,PO6

	Text Book							
1	Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science" Prentice Hall of							
	India 2010(Reprint)							
2	2 Rosen H "Discrete Mathematics and Its Application " Mc Graw Hill, 2007							
	Reference Books							
1.	Discrete Maths for Computer Scientists & Mathematicians by Mott, Kandel, Baker							
2.	Clark J and Holton DA "First look at Graph Theory" Allied Publishers 1995							
	Web Resources							
1.	Web resources from NDL Library, E-content from open source libraries							
2.	1) https://d3gt.com/ 2) https://www.coursera.org/courses?query=graph%20theory							

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	1	3	2	3
CO 3	3	3	3	3	2	3
CO 4	3	3	3	3	2	3
CO 5	3	2	3	3	3	3
Weightage of course	15	15	13	15	13	15
contributed to each PSO						

S-Strong-3 M-Medium-2 L-Low-1

Subje	•	Category	L	T	P	S	Credits	Inst.			larks		
Code								Hours	CIA	Exte	ernal	Total	
23BC	1 1	EC – 5	-	-	2	-	2	2	25	7	'5	100	
AP5	its applications Lab	Allied	Las		· Oh	 iaativ	Y0.0						
LO1	Definition of Graph, s	uh granh tha		rning		_		gabraia o	paration	NC.			
LO2	1 /						gree and an	georate o	peration	18.			
LO3	U 1 '	<u> </u>					chordal ora	inhs					
LO4		•						ipiis.					
LO5		Eulerian and Hamiltonian graphs: Characterization, Necessary and sufficient conditions											
Sl. No).	Details No. of Hours											
1	C 1										60		
2	Write a Program to fin		-					es is dire	cted or	indirec	eted.		
3	Write a program to fir							*.4					
4	Write a Program to Fi												
5	Write a Program to Fi												
6 7	Write a Program to fi										1		
/	Write a Program to fi Warshall's Algorithm.		Pain i	betwe	en e	very j	pair of veru	ces in a g	grapn us	sing Fi	oya-		
8	Write a Program to in		nh C	alaur	ing								
0	Write a Frogram to m	ipiement Gre	ipn C		rotal	l						60	
	I	Cour	se O			-					Prog	ramme	
											_	tcome	
CO	To Introduce the fundam					•			valks, E	uler			
	graphs, Hamiltonian Path												
CO1	Understanding the cond					and	its Propert	ies, Netv	work F	lows,	PO1		
GO2	Isomorphism and Combi					NT 1	D: 4	1.0 1	3.6 . 1				
CO2	Applying the concept of Covering Pattern and Eu		ith C	nrom	atic	Numt	oer, Directe	d Graphs	, Match	iing,	PO1,	PO2	
CO3	Analysing the Various C		enres	entati	on o	f Grai	nhe Fuler P	aths Circ	nit				
CO3	Kruskals and Prims Algo						piis, Luici i	ams che	uit,		PO4,	PO6	
CO4	Implementation of an app	•			•		hs and evalu	ate the A	nplicat	ions	PO4,	PO5.	
	with travelling sales pers								11		PO6	- /	
CO5	To Introduce the fundan	nental concep	pts in	grap	h the	eory (Graphs, sub	graphs, w	valks, E	uler	PO3,	DO5	
	graphs, Hamiltonian Path	ns Tree Prope	erties,	, Han	ilton	ian p	aths and cire	cuits.			PO3,	PO3	
	T				t Bo								
1	Narsingh Deo, "Graph	Theory with	Appl	icatio	n to	Engir	neering and	Compute	r Scien	ce" Pre	entice I	Hall of	
	India 2010 (Reprint)	. 11	Γι A	1.		4 1 1	C 11.11	2007					
2	Rosen H "Discrete Mathe	ematics and l						2007					
1.	Discrete Maths for Comp	uter Scientic		efere Math				andel D	akor				
2.	Clark J and Holton DA "								aktı				
۷.	Clark J and Hollon DA	1 1131 100K at	_	Veb I				10 1/93					
1.	Web resources from ND	Library F						es					
2.	1) https://d3gt.com/ 2) h								OTT				
۷.	1) https://dogt.com/ 2) h	ups.//www.c	ourse	710.UI	g/COL	nses?	query-grap	1170ZUHE	<u>or y</u>				

Subjec	t Subject Name	Category	L	T	P	S	Credits	Inst.		Marks		
Code								Hours	CIA	External	Total	
23BCA.	Computer Oriented Numerical Methods	EC – 6 Allied	3	-	-	-	3	3	25	75	100	
		I	earn	ing (bjec	tives		•		•	•	
LO1	To introduce the various											
LO2	To make understand the						ons.					
LO3		To apply interpolation and approximation on examples.										
LO4	To solve problems using											
LO5	To solve linear systems,	, numerical so	olutio				fferential e	quations.				
UNIT					tents						No. of Hours	
UNIT	FUNDAMENTALS OF ALGEBRAIC EQUATION: Solution of algebraic and transcendental equations-Bisection method – Fixed point iteration method – Newton Raphson method –linear system of equations – Gauss elimination method – Gauss Jordan method .											
UNITI	ITERATIVE, INTERPOLATION AND APPROXIMATION: Iterative methods - Gauss Jacobi and Gauss Seidel – Eigen values of a matrix by Power method and Jacobi's method for symmetric matrices. Interpolation with unequal intervals – Lagrange's interpolation – Newton's divided difference interpolation											
UNIT I	III INTERPOLATION WITH EQUAL INTERVAL: Difference operators and relations Interpolation with equal intervals – Newton's forward and backward difference formulae.							15				
UNIT I	V NUMERICAL DIFFE using interpolation poly										15	
UNIT	V INITIAL VALUE P	ROBLEMS	FOR	R OF	RDIN	ARY	DIFFER	RENTIAI	EQU	JATIONS:		
	Single step methods – Runge Kutta method for methods										15	
				Te	otal						75	
	,	Course	Out	come	S						gramme tcome	
CO	On completion of this cours	se, students w	/ill									
CO1	Know how to solve various			erical	metl	nods				PO1	PO6	
CO2	Use approximation to solve									PO2		
CO3	Differentiation and integrat	ion concept a	re ap	plied						PO2	PO4	
CO4	Apply, direct methods for										PO6	
CO5	Numerical solution of ordin	nary different								PO5	PO6	
					Book							
1	Balagurusamy, E., Numerio								- 4:			
2	Rajaraman V., Computer O	Priented Num					dition, Prei	ntice Hall	India,	New Delhi,	1998.	
1	Ct D11 1 1 C	0.1(137			e Bo		37 1	. 1000				
1.	Stoor, Bullrich, Computer C					_		<u> </u>		1000		
2.	Krishnamurthy, E.V., Sen,										D) T / 1	
3.	Jain, M.K., Iyengar, S.R.K. New Delhi, 1997.											
4.	Jain, M.K., Iyengar, S.R.K. Age Int. (P)Ltd., New Delh		umer	ical N	/letho	ds fo	r Scientific	and Engi	neering	g Competitio	n, New	

Web Resources							
1.	https://www.udemy.com/course/computer-oriented-numerical-techniques/						

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	1	3	2	3
CO 3	3	3	3	3	2	3
CO 4	3	3	3	3	2	3
CO 5	3	2	3	3	3	3
Weightage of course	15	15	13	15	13	15
contributed to each PSO						

S-Strong-3 M-Medium-2 L-Low-1

Subject	Subject Name	Category	L	Т	P	S	Credits	Inst.		Marks	
Code								Hours	CIA	External	Total
23BCAA P6	Computer Oriented Numerical Methods Lab (using C)	EC – 7 Allied	-	-	2	-	2	2	25	75	100
			earn								
LO1	To introduce the various	•									
LO2	To make understand the fundamentals of algebraic equations.										
LO3	To apply interpolation a	* *									
LO4	To solve problems using	g numerical d	iffere	ntiati	on a	nd int	egration.				
LO5	To solve linear systems,	numerical so	lutio	n of c	ordina	ary di	fferential e	quations.			
										No. of Hours	
1	Write a C Program to fin	nd the roots o	f non	-linea	ar equ	ıatior	n using bise	ction met	hod.		60
2	Write a C Program to fin	nd the roots o	f non	-linea	ar equ	ıatior	n using new	ton's met	hod		60
3	Write a C Program to so	lve the syster	n of l	inear	equa	tions	using gaus	s - elimin	ation n	nethod.	
4	Write a C Program to in	tegrate nume	ricall	y usii	ng Tr	apezo	oidal Rule.				
5	Write a C Program to in	tegrate nume	ricall	y usir	ng Si	mpso	n's rule.				
6	Write a C Program for N	Newtons forw	ard d	iffere	ence.						
7	Write a C Program to in	nplement Lag	range	's int	erpol	ation	method for	r finding 1	f(x) for	a given x	
8	Write a C Program to fin	nd the largest	eiger	ı valı	ie of	a mat	trix by pow	er - metho	od.		
9	Write a C Program to method.	find numeric	al so	lutio	n of	ordir	nary differe	ential equ	ations	by euler's	
10	Write a C Program to finethod.	nd numerical	solut	ion o	of ord	inary	differentia	l equation	ıs by ru	nge- kutta	
										Total	60
CO		Course Outo							Pro	ogramme O	utcome
CO CO1	On completion of this co	•			rical r	netho	ods		PO	1	
CO2	Use approximation to so			<u>umer</u>	10411	iic tiic	743			1, PO2	
CO3	Differentiation and integ									4, PO6	
CO4	Apply, direct methods to									4, PO5, PO6	·
CO5	Numerical solution of or	ruinary differ		equa					PO.	3, PO5	
1	Balagurusamy, E., Num	erical Method					11, 1999.				
2	Rajaraman V., Compute 1998.							Prentice I	Hall Inc	lia, New De	lhi,
				renc							
1.	Stoor, Bullrich, Comput	er Oriented N	lume	rical	Meth	ods, S	Springer-V	erlag, 199	8.		

2.	2. Krishnamurthy, E.V., Sen, S.K., Computer Based Numerical Algorithms, East West Press, 1998.							
3.	3. Jain, M.K., Iyengar, S.R.K., Jain R.K., Numerical Methods: Problems and Solutions, New Age Int. (P)							
	Ltd., New Delhi, 1997.							
4. Jain, M.K., Iyengar, S.R.K., Jain R.J., Numerical Methods for Scientific and Engineering Competition,								
	New Age Int. (P) Ltd., New Delhi, 1997							
	Web Resources							
1.	https://www.udemy.com/course/computer-oriented-numerical-techniques/							

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	1	3	2	3
CO 3	3	3	3	3	2	3
CO 4	3	3	3	3	2	3
CO 5	3	2	3	3	3	3
Weightage of course contributed to each PSO	15	15	13	15	13	15

S-Strong-3 M-Medium-2 L-Low-1