COURSE	ALLIED PHYSICS THEORY 1
COURSETITLE&	ALLIED PHYSICS – I
COURSE CODE	23BPHA1
CREDITS	3
COURSE	To impart basic principles of Physics that which would be helpful
OBJECTIVES	for students who have taken programmes other than Physics.

UNITS	COURSE DETAILS				
	WAVES, OSCILLATIONS AND ULTRASONICS: simple				
	harmonic motion (SHM) – composition of two SHMs at right angles				
	(periods in the ratio 1:1) - Lissajous figures - uses - laws of				
	transverse vibrations of strings - determination of AC frequency				
UNIT-I	using sonometer (steel and brass wires) – ultrasound – production –				
	piezoelectric method – application of ultrasonics: medical field –				
	lithotripsy, ultrasonography -ultrasonic imaging- ultrasonics in				
	dentistry – physiotheraphy, opthalmology – advantages of				
	noninvasive surgery – ultrasonics in green chemistry.				
	PROPERTIES OF MATTER: <i>Elasticity</i> : elastic constants – bending				
	of beam – theory of non- uniform bending – determination of Young's				
	modulus by non-uniform bending – energy stored in a stretched wire –				
	torsion of a wire – determination of rigidity modulus by torsional				
	pendulum				
UNIT-II	Viscosity: streamline and turbulent motion - critical velocity -				
	coefficient of viscosity - Poiseuille's formula - comparison of				
	viscosities – burette method,				
	<i>Surface tension</i> : definition – molecular theory – droplets formation–				
	shape, size and lifetime – COVID transmission through droplets, saliva				
	- drop weight method – interfacial surface tension.				
	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule-				
	Thomson porous plug experiment – theory – temperature of inversion				
	- liquefaction of Oxygen– Linde's process of liquefaction of air– liquid				
UNIT-III	Oxygen for medical purpose– importance of cryocoolers–				
	thermodynamic system – thermodynamic equilibrium – laws of				
	thermodynamics – heat engine – Carnot's cycle – efficiency – entropy				
	– change of entropy in reversible and irreversible process.				
	ELECTRICITY AND MAGNETISM: potentiometer – principle –				
	measurement of thermo emf using potentiometer -magnetic field due				
UNIT-IV	to a current carrying conductor – Biot-Savart's law – field along the				
	axis of the coil carrying current – peak, average and RMS values of ac				
	current and voltage – power factor and current values in an AC circuit				
	- types of switches in household and factories- Smart wifi switches-				
	fuses and circuit breakers in houses				

	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates				
	OP AND NOT NAND NOP EVOP logic gates universal				
	OK, AND, NOI, NAND, NOK, EXOK logic gates – ulliversal				
LINIT_V	building blocks – Boolean algebra – De Morgan's theorem –				
	verification – overview of Government initiatives: software				
	technological parks under MeitY, NIELIT- semiconductor laboratories				
	under Dept. of Space – an introduction to Digital India				
	PROFESSIONAL COMPONENTS: Expert lectures seminars				
UNIT-VI	webinars _ industry inputs _ social accountability _ patriotism				
	weomars – moustry mputs – social accountaomity – patriousm				
	1. R.Murugesan (2001), AlliedPhysics, S. ChandandCo, NewDelhi.				
	2. BrijlalandN.Subramanyam (1994),				
	WavesandOscillations, VikasPublishing House, NewDelhi.				
	3. BrijlalandN.Subramaniam (1994).				
	Properties of Matter, S. Chandand Co., New Delhi,				
TEXT BOOKS	4. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics				
	(8 th edition) S ChandandCo, New Delhi				
	5 R Murugesan(2005)				
	OnticsandSpectroscopy S ChandandCo NewDelhi				
	6 A Subramaniyam				
	AppliedElectronics ^{2nd} Edn NationalPublishingCo Chennai				
	1 PagniakHallidayandWalker(2018) FundamentalsofDhysics(11 th a				
	1. Residentialitation walker (2016). Fundamentalson hysics (11 c				
	2 V D Khampoon dD S Dadi (1008) Tayth calls from d1 st E da				
	2. V.K.Khannaandk.S.Bedi (1998), Textbookoisoundi Edn.				
	KednarnaathPublishandCo, Meerut.				
REFERENCE	3. N.S.KhareandS.S.Srivastava (1983),				
BOOKS	ElectricityandMagnetism10 ^m Edn.,AtmaRamandSons, New				
	Delhi.				
	4. D.R.KhannaandH.R. Gulati(1979). Optics, S. Chand				
	andCo.Ltd.,New Delhi.				
	5. V.K.Metha(2004).Principlesofelectronics6 ^{ad} Edn.				
	S.Chandandcompany.				
	1. <u>https://youtu.be/M_5KYncYNyc</u>				
	2. <u>https://youtu.be/ljJLJglvaHY</u>				
	3. <u>https://youtu.be/7mGqd9HQ_AU</u>				
	4. <u>https://youtu.be/h5jOAw57OXM</u>				
	5. <u>https://learningtechnologyofficial.com/category/fluid-</u>				
WEB	mechanics-lab/				
RESOURCES	6. <u>http://hyperphysics.phy-</u>				
	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watc				
	<u>h?v=gT8Nth9NWPMhttps://www.youtube.com/watch?v=9mX</u>				
	OMzUruMQandt=1shttps://www.youtube.com/watch?v=m4u-				
	SuaSu1sandt=3shttps://www.biolinscientific.com/blog/what-are-				
	surfactants-and-how-do-they-work				

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	C01	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications in medical field.					
COURSEO UTCOMES	CO2	Explain their knowledge of understanding about materials and their behaviors and apply it to various situation in laboratory and real life. Connect droplet theory with Corona transmission.					
	CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of flow temperature physics in the back ground of growth of this technology.					
	CO4	Articulate the knowledge about electric current resistant capacitance in terms of potential electric field and electric correlate the connection between electric field and magnetic field danalyze the mmathematically verify circuits and apply the concer- to construct circuits and study them.					
	CO5	Interpret the real life solutions using AND, OR, NOT basic logic gates and intend their ideas to universal building blocks. InferoperationsusingBooleanalgebraandacquireelementaryidea sofICcircuits.Acquire information about various Govt. programs/ institutions in this field.					

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-points scale of STRONG(S), MEDIUM(M) and LOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	M	S	S	S	S	M
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	ALLIED PHYSICS PRACTICAL			
COURSETITLE&	ALLIED PHYSICS PRACTICAL – I			
COURSE CODE	23BPHAP1			
CREDITS	2			
COURSE	Apply various physics concepts to understand Properties of Matter			
OBJECTIVES	and waves, set up experimentation to verify theories, quantify and			
	analyse, able to do error analysis and correlate results			
Minimum of Seve	n Experiments from the list:			
1. Young's modu	llus by non-uniform bending using pin and microscope			
2. Young's modu	llus by non-uniform bending using optic lever, scale and telescope			
3. Rigidity modu	3. Rigidity modulus by static torsion method.			
4. Rigidity modu	4. Rigidity modulus by torsional oscillations without mass			
2. Surface tension and interfacial Surface tension – drop weight method				
3. Comparison of viscosities of two liquids – burette method				
4. Specific heat capacity of a liquid – half time correction				
5. Verification of laws of transverse vibrations using sonometer				
6. Calibration of	6. Calibration of low range voltmeter using potentiometer			
7. Determination of thermo emf using potentiometer				
8. Verification of truth tables of basic logic gates using ICs				
9. Verification of De Morgan's theorems using logic gate ICs.				
10. Use of NAND as universal building block.				
Note : Use of digitation	al balance permitted			

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PHYSICS THEORY
COURSETITLE&	ALLIED PHYSICS –II
COURSE CODE	23BPHA2
CREDITS	3
COURSE	To understand the basic concepts of optics, modern Physics,
OBJECTIVES	concepts of relativity and quantum physics, semiconductor
	physics, and electronics.

UNITS	COURSE DETAILS				
	OPTICS: Interference – interference in thin films –colors of thin				
	films – air wedge – determination of diameter of a thin wire by air				
	wedge – diffraction – diffraction of light vs sound – normal				
UNIT-I	incidence – experimental determination of wavelength using				
	diffraction grating (no theory) – polarization – polarization by				
	double reflection – Brewster's law – optical activity – application				
	in sugar industries				
	ATOMIC PHYSICS: Atom models – Bohr atom model – mass				
	number – atomic number – nucleons – vector atom model – various				
	quantum numbers – Pauli's exclusion principle – electronic				
LINIT II	configuration – periodic classification of elements – Bohr				
	magneton – Stark effect –Zeeman effect (elementary ideas only) –				
	photo electric effect – Einstein's photoelectric equation –				
	applications of photoelectric effect: solar cells, solar panels,				
	optoelectric devices				
	NUCLEAR PHYSICS: Nuclear models – liquid drop model –				
	magic numbers – shell model – nuclear energy – mass defect –				
	binding energy – radioactivity – uses – half life – mean life - radio				
	isotopes and uses -controlled and uncontrolled chain reaction -				
	nuclear fission – energy released in fission – chain reaction –				
UNIT-III	critical reaction - critical size- atom bomb - nuclear reactor -				
	breeder reactor – importance of commissioning PFBR in our				
	country - heavy water disposal, safety of reactors: seismic and				
	floodsintroduction to DAE, IAEA nuclear fusion				
	thermonuclear reactions – differences between fission and fusion.				
	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL				
	WAVES: Frame of reference – postulates of special theory of				
UNIT-IV	relativity – Galilean transformation equations – Lorentz				
	transformation equations – derivation – length contraction – time				
	dilation – twin paradox – mass-energy equivalence –introduction				
	on gravitational waves, LIGO, ICTS opportunities at International				
	Centre for Theoretical Sciences				

	SEMICONDUCTOR PHYSICS: p-n junction diode – forward				
	and reverse biasing – characteristic of diode – zener diode –				
	characteristic of zener diode – voltage regulator – full wave bridge				
UNIT-V	rectifier – construction and working – advantages (no mathematical				
	treatment) USB cell phone charger introduction to e vehicles				
	and EV shareing stations				
	and EV charging stations				
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars –				
	weomars industry inputs social accountability patronsin				
	1. R.Murugesan (2005), AlliedPhysics, S.ChandandCo, NewDelhi.				
	2. K.ThangarajandD.Jayaraman(2004),				
	AlliedPhysics,PopularBookDepot,Chennai.				
	3. BrijlalandN.Subramanyam(2002),				
TEXT BOOKS	TextbookofOptics,S.ChandandCo,NewDelhi.				
	4. R.Murugesan (2005), ModernPhysics, S.ChandandCo, NewDelhi.				
	5. A.SubramaniyamAppliedElectronics,				
	2 nd Edn.,NationalPublishingCo.,Chennai.				
	1 RespickHallidayandWalker (2018) FundamentalsofPhysics				
	1. Residentialitation warker (2010), Fundamentalson hysics,				
	2 D P KhannaandH P Gulati (1070) Optics				
	S. ChandandCo. I td. New Delhi				
	3 A Beiser (1007)				
REFERENCE	ConcentsofModernPhysics TataMcGrawHillPublication NewD				
BOOKS	elhi				
	4 Thomas I. Floyd (2017) Digital Fundamentals 11 th Edn				
	Universal Book Stall NewDelhi				
	5 V K Metha(2004) Principlesofelectronics 6 th Edn				
	S.Chandand Company. New Delhi.				
	1. https://www.berkshire.com/learning-center/delta-p-				
	facemask/https://www.voutube.com/watch?v=OrhxU47gti4htt				
	ps://www.voutube.com/watch?time_continue=318andy=D38Bi				
	gUdL5Uandfeature=emb_logo				
WEB	2. https://www.voutube.com/watch?v=JrRrp5F-Ou4				
RESOURCES	3. https://www.validyne.com/blog/leak-test-using-pressure-				
	transducers/				
	4. https://www.atoptics.co.uk/atoptics/blsky.htm -				
	5. https://www.metoffice.gov.uk/weather/learn-				
	about/weather/optical-effects				

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

		Explain the concepts of interference diffraction using		
	CO1	principles of super position of waves and rephrase the concept		
		of polarization based on wave patterns		
	CO2	Outline the basic foundation of different atom models and		
		various experiments establishing quantum concepts. Relate the		
		importance		
		of interpreting improving theoretical models based on observation.		
		Appreciate interdisciplinary nature of science and in solar energy		
		related applications.		
		Summarize the properties of nuclei, nuclear forces structure of		
COURSE	CO3	atomic nucleus and nuclear models. Solve problems on delay		
		rate half-life and mean-life. Interpret nuclear processes like		
OUTCOMES		fission and fusion. Understand the importance of nuclear		
		energy, safety measures carried and get our Govt. agencies like		
		DAE guiding the country in the nuclear field.		
	CO4	To describe the basic concepts of relativity like equivalence		
		principle, inertial frames and Lorentz transformation. Extend		
		their knowledge on concepts of relativity and vice versa.		
		Relate this with current research in this field and get an		
		overview of research projects of National and International		
		importance, like LIGO, ICTS, and opportunities available.		
	CO5	Summarize the working of semiconductor devices like		
		junction diode, Zener diode, transistors and practical devices		
		we daily use like USB chargers and EV charging stations.		

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-points scale of STRONG(S), MEDIUM(M) and LOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	M	S	S	S	S	M
CO3	М	S	S	S	S	M	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	ALLIED PHYSICS PRACTICAL					
COURSETITLE&	ALLIED PHYSICS PRACTICAL- II					
COURSECODE	23BPHAP2					
CREDITS	2					
	Apply various Physics concepts to understand concepts of Light,					
COURSE	electricity and magnetism and waves, set up experimentation to verify					
OBJECTIVES	theories, quantify and analyse, able to do error analysis and correlate results					
Minimum of Sever	n Experiments from the list:					
1. Radius of cur	1. Radius of curvature of lens by forming Newton's rings					
2. Thickness of	2. Thickness of a wire using air wedge					
3. Wavelength of	3. Wavelength of mercury lines using spectrometer and grating					
4. Refractive in	4. Refractive index of material of the lens by minimum deviation					
5. Refractive in	5. Refractive index of liquid using liquid prism					
6. Determination	6. Determination of AC frequency using sonometer					
7. Specific resis	7. Specific resistance of a wire using PO box					
8. Thermal cond	8. Thermal conductivity of poor conductor using Lee's disc					
9. Determination	9. Determination of figure of merit table galvanometer					
10. Determination	10. Determination of Earth's magnetic field using field along the axis of a coil					
11. Characterisat	11. Characterisation of Zener diode					
12. Construction	12. Construction of Zerner/IC regulated power supply					
13. Construction	13. Construction of AND, OR, NOT gates using diodes and transistor					
14. NOR gate as	14. NOR gate as a universal building block					
METHOD OF EVA	LUATION:					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	