S.No	Paper Code	Courses	Title of the paper	T/P	Credits	Hours/ Week		Mark	(S
			I Semester				Ι	E	Total
Ι	23MPH1C1	Core 1	Mathematical Physics	Т	5	6	25	75	100
	23MPH1C2	Core 2	Classical Mechanics and Relativity	Т	5	6	25	75	100
	23MPH1P1	Core 3	Physics Practical I	Р	4	8	25	75	100
	23MPHIE1	DSE-1	Linear and Digital ICs and	Т	3	5	25	75	100
			Applications						
	23MPHIE2	DSE-2	Energy Physics	Т	3	5	25	75	100
			· · · ·		20	30	125	375	500
			II Semester						
Π	23MPH2C1	Core 4	Statistical Mechanics	Т	5	6	25	75	100
	23MPH2C2	Core 5	Quantum Mechanics –I	Т	5	6	25	75	100
	23MPH2P1	Core 6	Physics Practical – II	Р	4	6	25	75	100
	23MPH2E1/	DSE-3	Bio Physics/	Т	3	4	25	75	100
	23MPH2E2		Advanced Optics						
	23MPH2E3/	DSE-4	Microprocessor 8085 and	Т	3	4	25	75	100
	23MPH2E4		Microcontroller 8051/						
			Characterization of Materials						
	23MPH2S1	SEC-1	Solar Energy Utilization	Т	2	4	25	75	100
					22	30	150	450	600
			III Semester						
II	23MPH3C1	Core 7	Quantum Mechanics –II	T	5	6	25	75	100
Ι	23MPH3C2	Core 8	Numerical Methods and Computer	T	5	6	25	75	100
			Programming						
	23MPH3C3	Core 9	Electromagnetic Theory	T	4	6	25	75	100
	23MPH3P1	Core 10	Physics Practical – III	P	4	6	25	75	100
	23MPH3E1/	DSE-5	Physics of Nano Science and	Т	4	4	25	75	100
	23MPH3E2		Technology/						
			Crystal Growth and Thin films						
	23MPH3S1	SEC-2	Solid Waste Management	T	2	2	25	75	100
	23MPH3I		Internship/Industrial Activity		2	-	25	75	100
					26	30	175	525	700
			IV Semester						
Ι		Core 11	Nuclear and Particle Physics	Т	5	6	25	75	100
V		Core 12	Spectroscopy	Т	5	6	25	75	100
		Core 13	Project with Viva-Voce		6	10	25	75	100
		DSE-6	Materials Science/	T	4	4	25	75	100
	23MPH4E2		Condensed Matter Physics						
	23MPH4S1	SEC-3	Sewage and Waste Water Treatment and Reuse	Т	2	4	25	75	100
			Extension Activity		1				
-			Total		23	30	125	375	500
					91+EC			1725	

PG – Physics - Model Programme structure Affiliated Colleges

Core Courses

DSE – Discipline Specific Elective –Give more option to the student (Choice) and it may be conducted by parallel sessions.

SEC- Skill Enhancement Course

Dissertation- Marks -Vivo-voce (50) + thesis (100) + internal (50) = 200 Internship report –Marks -Vivo-voce (25) + reports (50) + internal (25) = 100

*AEC- Ability Enhancement Courses (may be included by altering the surplus credits and hours of other courses)

ELECTIVE PAPERS

List 1

- 1. Energy Physics
- 2. Crystal Growth and Thin films
- 3. Analysis of Crystal Structures
- 4. Materials Science
- 5. Physics of Nano Science and Technology
- 6. Digital Communication
- 7. Communication Electronics
- 8. Astrophysics

LIST 2

- 9. Plasma Physics
- 10. Bio Physics
- 11. Non-linear Dynamics
- 12. Quantum Field Theory
- 13. General Relativity and Cosmology
- 14. Advanced Optics
- 15. Advanced Mathematical Physics

LIST 3

INDUSTRY ORIENTED ELECTIVE (IOE)

- 16. Advanced Spectroscopy
- 17. Microprocessor 8086 and Microcontroller 8051
- 18. Characterization of Materials
- 19. Medical Physics
- 20. Solid Waste Management
- 21. Sewage and Waste Water Treatment and Reuse
- 22. Solar Energy Utilization

(Note: Institutions can also frame such IOE courses more suitable for their locality.)

Paper-1 – M	ATHEMATICAL PHYSICS	I YEAR - FI	RST	' SEI	MES	STER						
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst.	Hours	Marks			
23MPH1C1	MATHEMATICAL PHYSICS	Core-I		Т		5		6 75				
	Pre-Requisit											
Knowledge of	Knowledge of Matrices, vectors, differentiation, integration, differential equations											
· · · ·	Learning Objectives											
 To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program To extend their manipulative skills to apply mathematical techniques in their fields To help students apply Mathematics in solving problems of Physics 												
	Course Deta											
UNIT I	LINEAR VECTOR SPACE: Basic concepts – Definitions- examples of vectorspace – Linear independence - Scalar product- Orthogonality – Gram-SchmidtUNIT Iorthogonalization procedure –linear operators – Dual space- ket and bra notation –orthogonal basis – change of basis – Isomorphism of vector space – projectionoperator –Eigen values and Eigen functions – Direct sum and invariant subspace –											
UNIT II	orthogonal transformations and rotationCOMPLEX ANALYSIS: Review of Complex Numbers -de Moivre's theorem- Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series 											
UNIT III	MATRICES: Types of Matrices and t of a matrix - Adjoint of a matrix - I Matrices -Trace of a matrix- Transforr Eigen values and Eigen vectors - Cayle	nverse of a m nation of matri	atrix ices	- H - Ch	lerm araci	itian teristi	anc c e	l Uı qua	nitary			
UNIT IV	transform and its inverse - Transform o Fourier transform of derivatives - Cosir Application: Diffusion equation: Flow o medium - Wave equation: Vibration of string. Laplace transform and its inverse -	Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization FOURIER TRANSFORMS & LAPLACE TRANSFORMS: Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function - Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions - Application -										
UNIT V	DIFFERENTIAL EQUATIONS: S Liouville's theory - Series solution wi Generating function - Orthogonality p polynomials - Generating function - R Dirac delta function- One dimensional Sturm-Liouville's type equation in one	econd order th simple exan roperties - Re odrigue formul Green's funct	diffe nples curre la – ion a	erenti s - H ence Orth and]	Ierm rela ogor Recij	ite po tions nality procit	olyr - 1 pro y t	nom Leg oper	ials - endre ties -			

UNIT VI	PROFESSIONAL COMPONENTS : Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and									
	Communication Skill Enhancement, Social Accountability and Patriotism									
 George Arfken and Hans J Weber, 2012, Mathematical Methods for Ph – A Comprehensive Guide (7th edition), Academic press. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2nd edition), New Ag Delhi A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Pap New Age International Pvt.Ltd., India B. D. Gupta, 2009, <i>Mathematical Physics</i> (4th or VikasPublishing House New Delhi 										
	 VikasPublishing House, New Delhi. 5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi. 									
REFERENC E BOOKS	 E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi, D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated EastWest, New Delhi. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York 									
WEB SOURCES	 www.khanacademy.org https://youtu.be/LZnRIOA1_2I http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU2 7vS_SIED56gNjVJGO2qaZ https://archive.nptel.ac.in/courses/115/106/115106086/ 									

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	К2, КЗ
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	K4
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K2, K5

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

MAPPING_WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Paper-2 – CLA	SSICAL MECHANICS AND RELATIVI	ГY I YI	EAR	- FI	RST	SEN	IEST	ER	
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	
23MPH1C2	CLASSICAL MECHANICS AND RELATIVITY	Core-II		Т		5	6	75	
	Pre-Requisites	·							
Knowledge of fur	damentals of mechanics, Foundation in mat	hematical meth	ods.						
	Learning Objecti	ves							
	nd fundamentals of classical mechanics.								
	nd Lagrangian formulation of mechanics and								
	nd Hamiltonian formulation of mechanics an	d apply it to so	lve e	equat	tion	of mo	tion.		
	ne theory of small oscillations of a system.								
To learn the	relativistic formulation of mechanics of a sy								
	Course Details		•	0		1	. 1		
LINUT I	PRINCIPLES OF CLASSICAL MECH							-	
UNIT I	mechanics of a system of particles – conse			•					
	constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.								
	LAGRANGIAN FORMULATION: D'A							ations	
UNIT II	of motion for conservative systems – appl								
	machine (iii) projectile motion.	ileations. (i) si	mpr	per	iuun	in (n) Alw	000 5	
	HAMILTONIAN FORMULATION: Ph	ase space – c	veli	2 000	ordir	ates -	- coni	ugate	
UNIT III	momentum – Hamiltonian function – Ha								
	applications: (i) simple pendulum (ii) one								
	motion of particle in a central force field.		1						
UNIT IV	SMALL OSCILLATIONS: Formulation	of the proble	em –	tra	nsfor	matio	n to 1	normal	
	coordinates - frequencies of normal modes								
	RELATIVITY: Inertial and non-inertial f					ation	equati	ons –	
UNIT V	length contraction and time dilation – re								
	mass-energy relation – Minkowski's sp								
	momentum, acceleration and force in for ve							•	
	PROFESSIONAL COMPONENTS: Exp	pert Lectures	Juli		min	ore	Wahin	are on	
UNIT VI	Industrial Interactions/Visits, Compe					ars - Emplo		and	
	Communication Skill Enhancement, Social						yaute	anu	
		-							
	1. H. Goldstein, 2002, <i>Classical Me</i>							[
	2. J. C. Upadhyaya, <i>Classical 1</i>	Mechanics, H	imal	ayaP	ubis	ning.	Co.N	ew	
	Delhi. 3. R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley								
TEXT BOOK	Eastern, New Delhi.								
	Eastern, New Delhi. 4. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics – Tata								
	– McGraw Hill, New Delhi, 198			.5510	~1 IVI	conall	105 1	au	
	5. N. C. Rana and P.S. Joag, Classic		- Ta	ta M	cGra	w Hil	1, 200	1	

	1. K. R. Symon, 1971, Mechanics, Addison Wesley, London.
DEEEDENCE	2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
REFERENCE	3. Gupta and Kumar, Classical Mechanics, KedarNath.
BOOKS	4. T.W.B. Kibble, Classical Mechanics, ELBS.
	5. Greenwood, Classical Dynamics, PHI, New Delhi.
	1. http://poincare.matf.bg.ac.rs/~zarkom/Book Mechanics Goldstein Classic
	al_Mechanics_optimized.pdf
	2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-editionpdf-
WEB SOURCES	pdf-free.html
WEB SOURCES	3. https://nptel.ac.in/courses/122/106/122106027/
	4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-
	2014/lecture-notes/
	5. <u>https://www.britannica.com/science/relativistic-mechanics</u>
COUDSE OU	TCOMES.

At the end of the course the student will be able to:

		K2
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3, K5
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

Paper 4 - PRA	CTICAL I	I YEAR - FIRST SEMESTER								
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks		
23MPH1P1	PHYSICS PRACTICAL I	Practical -I			Р	4	8	75		
Pre-Requisites										

Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. Thickness of air film FP Etalon
- 8. Measurement of Band gap energy- Thermistor
- 9. Determination of Specific charge of an electron Thomson's method.
- 10. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 11. GM counter Characteristics and inverse square law.
- 12. Measurement of Conductivity Four probe method.
- 13. Molecular spectra AlO band.
- 14. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 15. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench
- 16. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 17. Construction of relaxation oscillator using UJT
- 18. FET CS amplifier- Frequency response, input impedance, output impedance
- 19. Study of important electrical characteristics of IC741.
- 20. V- I Characteristics of different colours of LED.
- 21. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 22. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.

23. Constructi	n of Schmidt tri	gger circuit using IC 741 for a given hysteresis- application as
squarer.		
24. Constructi	n of square wave	Triangular wave generator using IC 741
25. Constructi	n of a quadrature	e wave using IC 324
26. Constructi	n of pulse genera	tor using the IC 741 – application as frequency divider
27. Study of F	S, clocked R-S a	nd D-Flip flop using NAND gates
		ops using IC 7476/7473
29. Arithmetic	operations using	IC 7483- 4-bit binary addition and subtraction.
30. Study of A	ithmetic logic ur	nit using IC 74181.
	1. Practical	Physics, Gupta and Kumar, PragatiPrakasan.
	2. Kit Deve	eloped for doing experiments in Physics- Instruction manual,
	R.Sriniva	san K.R Priolkar, Indian Academy of Sciences.
TEXT BOOKS	3. Electroni	c Laboratory Primer a design approach, S. Poornachandra,
IEAI DOORS	B.Sasikal	a, Wheeler Publishing, New Delhi.
	4. Electroni	c lab manual Vol I, K ANavas, Rajath Publishing.
	5. Electroni	c lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. Advance	d Practical Physics, S.P Singh, PragatiPrakasan.
	2. An advar	ced course in Practical Physics, D.Chattopadhayay, C.R Rakshit,
	New Cen	tral Book Agency Pvt. Ltd
REFERENCE	3. Op-Amp	and linear integrated circuit, Ramakanth A Gaykwad, Eastern
BOOKS	Economy	Edition.
DUUKS	4. A course	on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
	Sons (As	ia) Pvt. Ltd.
		c lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishin	g.

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2					
CO2	Acquire knowledge of thermal behaviour of the matetials.						
CO3	Understand theoretical principles of magnetism through the experiments.	K2					
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3					
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5					
CO6	Conduct experiments on applications of FET and UJT	K4					
CO7	Analyze various parameters related to operational amplifiers.	K4					
CO8	Understand the concepts involved in arithmatic and logical circuits using IC's	K2					
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1					
CO10	Analyze the applications of counters and registers	K4					
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	•					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Paper- 3 - L	Paper- 3 - LINEAR AND DIGITAL ICs & APPLICATIONS I YEAR - FIRST SEMESTER										
Subject Code	Subject Name	Categor y	L	Т	Р	Credits	Inst. Hours	Marks			
23MPH1E1	LINEAR AND DIGITAL ICs AND APPLICATIONS	DSE-I		Т		3	5	75			

		Pre-Requisites						
Kno	wledge of semic	onductor devices, basic concepts of digital and analog electronics						
		Learning Objectives						
		e basic building blocks of linear integrated circuits.						
		ear and non-linear applications of operational amplifiers.						
		e theory and applications of PLL.						
		e concepts of waveform generation and introduce one special function ICs.						
	Exposure to dig							
	UNITS	Course Details						
	UNIT I INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER: Introductio Classification of IC's, basic information of Op-Amp 741 and its features, the ide Operational amplifier, Op-Amp internal circuit and Op-Amp.Characteristics.							
	UNIT II	APPLICATIONS OF OP-AMP: LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multi vibrators, Triangular and Square waveform generators.						
	UNIT III	ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS: ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL						
	UNIT IV	 VOLTAGE REGULATOR & D to A AND A to D CONVERTERS: VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications. 						
	UNIT V	CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74XX ICs & SEQUENTIAL CIRCUITS USING TTL 74XX ICs CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-AND-INVERT gates, implementation of any function						

	UNITS CHOSE IS THE COMPLEXATIONAL OF CHUTS USED OF THE TAXY IC. St. 1
	using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study
	of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC
	7485), Decoder (IC 74138, IC 74154), BCD to
	7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151),
	Demultiplexer (IC 74154).
	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473),
	Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary
	counter (IC 7493).
UNIT VI	PROFESSIONAL COMPONENTS: Expert Lectures, Online Seminars - Webinars
UNII VI	on Industrial Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and Patriotism
	1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition,
	New Age International Pvt.Ltd.,NewDelhi,India
	2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th
	edition, Prentice Hall / Pearson Education, NewDelhi.
	3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S.
TEXT BOOKS	Chand & Co.
	4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co,
	12th Edition.
	5. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital &
	Analog), S.Viswanathan Printers & Publishers Private Ltd, Reprint. V.
	1. Sergio Franco (1997), Design with operational amplifiers and analog integrated
	circuits, McGraw Hill, New Delhi.
	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley
	International, New Delhi.
REFERENCE	3. Malvino and Leach (2005), Digital Principles and Applications 5th Edition,
BOOKS	Tata McGraw Hill, New Delhi
DOORS	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New
	Delhi.
	5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint
	(2000)
	1. https://nptel.ac.in/course.html/digital circuits/
	 https://nptel.ac.in/course.html/electronics/operational amplifier/
	3 https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field-effect-
WEB SOURCES	controlled-thyristors/
	4. https://www.electrical4u.com/applications-of-op-amp/
	 https://www.elecuteartu.com/appreations-or-op-amp/ https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/
	5. https://www.geekstorgeeks.org/digitar-electronics-togie-design-tutorials/

At the end of the course the student will be able to:

	Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	· ·
	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	NJ
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	K1, K3

		K2
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	K1, K4
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Elective - List	1 – 1. ENERGY PHYSICS	I/II YEAR	- FIF	RST/T	HIRI) SEMI	ESTER		
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	
23MPH1E2	ENERGY PHYSICS	DSE-II		Т		3	5	75	
		re-Requisites							
Knowledge of c	onventional energy resources								
 To know th To study th To learn th 	bout various renewable energy so he ways of effectively utilizing t he method of harnessing wind en he techniques useful for the conv bout utilization of solar energy.	he oceanic energy. hergy and its advantage		ful en	ergy.				
UNITS		Course Detai	ls						
UNIT I	energy sources and their avai	INTRODUCTION TO ENERGY SOURCES: Conventional and non-conventional energy sources and their availability–prospects of Renewable energy sources– Energy from other sources–chemical energy–Nuclear energy– Energy storage and distribution.							
UNIT II	ENERGY FROM THE OCEANS: Energy utilization–Energy from tides–Basic principle of tidal power–utilization of tidal energy – Principle of ocean thermal energy conversion systems.								
UNIT III	WIND ENERGY SOURCES the wind–forces in the Blades- of wind energy conversion sy energy.	- Wind energy conve	ersion	-Adva	antage	es and d	isadvant	ages	
UNIT IV	ENERGY FROM BIOMASS Photosynthesis -Biogas Genera digestion – Advantages of anac generation of gas- bio gas from	tion: Introduction-bacterion-factor	asic p ors af	rocess fecting	s: Aero g bio o	obic and digestion	l anaerol n and	oic	
UNIT V	cells for direct conversion of s cell electrical characteristics-	SOLAR ENERGY SOURCES: Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics- Efficiency-solar water Heater -solar distillation- solar cooking-solar greenhouse - Solar pond and its applications.						solar	
UNIT VI	PROFESSIONAL COMPONENTS: Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism								
TEXT BOOKS	 G.D. Rai, 1996, Non – co Delhi. S. Rao and Dr. ParuLekat M.P. Agarwal, Solar Ene Solar energy, principles of 2ndedition, Tata McGrav Energy Technology by S. 	r, Energy technology rgy, S. Chand and Co of thermal collection v-Hill Publishing Co	5., Ne and st . Lt., 1	w Del torage	hi (19 by S.	183). P.Sukha		Jew	

	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and Francis
	group, London and New York.
	2. Applied solar energy, A.B.MeinelandA.P.Meinal
DEFEDEN	3. John Twidell and Tony Weir, Renewable energy resources, Taylor and Francis
REFEREN	group, London and New York.
CE BOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki-PHI
	Learning
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech
	Publications
	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
WED	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
WEB SOUDCES	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
SOURCES	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/
COUDSE	OUTCOMES:

COURSE OUTCOMES: At the end of the course, the student will be able to:

110	the chu of the course, the student will be able to.	
CO	To identify various forms of renewable and non-renewable energy sources	K1
CO	2 Understand the principle of utilizing the oceanic energy and apply it for practical applications.	K2
	applications.	
CO	B Discuss the working of a windmill and analyze the advantages of wind energy.	K3
CO	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4
CO	5 Understand the components of solar radiation, their measurement and apply them to	K) K5
	utilize solar energy.	N2,N3
K1 -]	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

1		()		l			(-))			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Paper 4 - STAT	ISTICAL MECHANICS	I YEAR - S	SECC	ND S	EME	STER						
Subject Code	Subject Name	Categ ory	L	Т	Р	Credi ts	Inst. Hour	S	Mark s			
23MPH2C1	STATISTICAL MECHANICS	Core-IV		Т		5	6		75			
	Pre-Requisites											
	nowledge of Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical											
and quantum stati	stics, thermal equilibrium, Brownian n											
	 Learning Objectives To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics 											
-	he relationship between statistic and th	ermodynami	c qua	ntities								
	end the concept of partition function, c		grand	l canoi	nical e	ensemble	es					
statistics	fundamental knowledge about the three	•••										
	To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time											
	Course D											
UNIT I UNIT II	 phase rule - Phase transitions Thermodynamics. Order parameter indices - Scale transformations and STATISTICAL MECHANICS 	 PHASE TRANSITIONS Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications – Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis. STATISTICAL MECHANICS AND THERMODYNAMICS : Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - 										
	Phase space – Entropy - Connection of an ideal gas using the micro can paradox.	n between sta nonical enser	tistics nble ·	and t Entro	hermo opy of	odynami f mixing	cs – E g and (ntr Gił	opy ob's			
UNIT III:	CANONICAL AND GRAND density of states - Liouville's theory Partition function - Calculation fluctuations.	rem - Canon	ical a	nd gra	and ca	nonical	ensen	ıbl	es -			
UNIT IV:	CLASSICAL AND QUANTUM ensembles - Statistics of indistingu statistics - Fermi-Dirac statistics - statistics - Plank radiation formula -	iishable - Ideal Ferm	i gas	partic – De	les - gener	Maxwel acy - B	l-Bolt lose-E	zm ins	ann			
UNIT V:	REAL GAS,ISING MODEL AND FLUCTUATIONS Cluster expansion for a classical gas - Virial equation of state – Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in onedimension. Correlation of space-time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation											
UNIT VI:	PROFESSIONAL COMPONENT Industrial Interactions/Visits, Communication Skill Enhancement	Competitive	Exa	nminat	ions,	Empl	- Webi oyable		rs on and			

TEXT BOOKS	 S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Age International, New Delhi. J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Publication, New Delhi. F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, N New York. M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition, M New York. 	l Edition New Text, Allied IcGraw -Hill,						
REFERENCE BOOKS	 New York. R. K. Pathria, 1996, <i>Statistical Mechanics</i>, 2nd edition, Butter WorthHeineman New Delhi. L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i>, Pergamon Press, Oxfor K. Huang, 2002, <i>Statistical Mechanics</i>, Taylor and Francis, London W. Greiner, L. Neiseand H.Stoecker, <i>Thermodynamics and Statistical Mechanic</i> Springer Verlang, New York. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i>, Books and Allied, Kolkata. 							
WEB SOURCES	WEB 1. https://byjus.com/chemistry/third-law-of-thermodynamics/ WEB 2. https://web.stanford.edu/~peastman/statmech/thermodynamics.html WEB 3. https://web.stanford.edu/~peastman/statmech/thermodynamics.html							
COURSI	E OUTCOMES:							
At the en	d of the course the student will be able to:							
CO1 To ex	amine and elaborate the effect of changes in thermodynamic quantities or	K5						
the sta	ites of matter during phase transition							
specif forces Descr Justify	alyze the macroscopic properties such as pressure, volume, temperature, ic heat, elastic moduli etc. using microscopic properties like intermolecular , chemical bonding, atomicity etc. ibe the peculiar behaviour of the entropy by mixing two gases y the connection between statistics and thermodynamic quantities	K4						
ine re	entiate between canonical and grand canonical ensembles and to interpre- ation between thermodynamical quantities and partition function							
CO4 To red ideal	CO4 To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguish between K5 the three types of statistics.							
CO5 To d	CO5 To discuss and examine the thermodynamical behaviour of gases under fluctuation and also using Ising model							
	iber; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	<u>'</u>						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3

CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Paper 5 - QU	JANTUM MECHANICS – I	I YEAR	- SEC	OND	SEMI	ESTE	R	1
Subject Code	Subject Name	Catego ry	L	Т	Р	Credits	Inst. Hours	Marks
23MPH2C2	QUANTUM MECHANICS – I	Core-V		Т		5	6	75
	Pre-Requis	ites	1	1		1	1	
Knowledge of	Newton's laws of motion, Schrodinger's	equation, inte	gratio	n, diffe	erentia	tion.		
	Learning Ob							
 mechanic To descri To formutin a three To explain relation to the second secon	op the physical principles and the matcal descriptions. be the propagation of a particle in a simple late and solve the Schrodinger's equation -dimensional potential. in the mathematical formalism and the si of fundamental symmetries in nature	e, one-dimens to obtain eig gnificance of	sional genvec	potent tors an ants of	ial. id ener	rgies : on, an	for pa	article e thei
	ss the Approximation methods like perturb	pation theory,	Varia	tional	and W	KB n	netho	ds foi
solving th	e Schrödinger equation. Course Det	aile						
	BASIC FORMALISM Interpretation							
UNIT II:	VALUE PROBLEMS Square – well pe with finite walls – Square potential b periodic potential – Kronig-penny squa	les – General REE-DIMEN otential with r arrier – Alph re – well per	Uncer SION rigid w na emi iodic p	tainty NAL valls – ission potenti	relatic ENEI Squar – Blo al – L	on RGY e well och w inear	EI pote aves harm	GEN ential in a nonic
	oscillator: Operator method – Particle	-	-	-	-	tric p	otent	tial –
UNIT III:	System of two interacting particles – Hy GENERAL FORMALISM Dirac nor representation – Heisenberg representa representation – Momentum representa Unitary transformation – Parity and time	ation – Equa tion – Interac ation – Symi	ations ction r	of mo represe	otions ntation	n – C	oord	inate
UNIT IV:	Unitary transformation – Parity and time reversal APPROXIMATION METHODS Time independent perturbation theory for non- degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.							
UNIT V:	ANGULAR MOMENTUM Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.							
UNIT VI:	Communication Skill Enhancement, Soc	petitive Ex ial Accountal	amina bility a	tions, and Pat	Em <u>j</u> triotisr	ploya n	ble	and
TEXT	1. P. M. Mathews and K. Venkate 2 nd edition(37th Reprint),Tata McGra				~	ım M	lecha	inics,

DOOVE	
BOOKS	2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi,
	2009.
	3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011.
	4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st Edition,
	S.Chand& Co., New Delhi, 1982.
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications,
	4 th Edition, Macmillan, India, 1984.
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New
	York, 1970.
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New
REFER	Delhi, 1985.
ENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press,
BOOKS	Oxford, 1976.
	4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
	5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International
	Ltd, Oxford, 2011.
	1. http://research.chem.psu.edu/lxjgroup/download files/chem565-c7.pdf
	2. http://www.feynmanlectures.caltech.edu/III 20.html
WEB	3. http://web.mit.edu/8.05/handouts/jaffe1.pdf
SOURCE	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group Theory Lectures/Lecture
S	1.pdf
	5. https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf
	5. <u>https://ticory.physics.manenester.ac.uk/~Xiaii/qii/enapter5.pur</u>

At the end of the course the student will be able to:

CO1 Demonstrates a clear understanding of the ba	asic postulates of quantum	
mechanics which serve to formalize the rules of qu	antum K1,	K5
Mechanics		
CO2 Is able to apply and analyze the Schrodinger equat problems and three dimensional problems	tion to solve one dimensional K3 , I	K4
CO3 Can discuss the various representations, spa	ace time symmetries and K1	
CO4 Can formulate and analyze the approximation m mechanical problems	K5	
CO5 To apply non-commutative algebra for topics such momentum and hence explain spectral line splitting	h as angular and spin angular g.	K4
K1 - Remember; K2 – Understand; K3 - Apply; K4 - A		

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3

CO5	3	3	3	2	3	S	3	3	2	3
000			0	_	0	~	0	0	_	0

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Paper 6 – PHYSICS PRACTICAL II	I YEAR -	SEC	CON	D SI	EMES	TER	
Subject Subject Name	Catego ry	L	Т	Р	Credits	Inst. Hours	Marks
23MPH2P1 PHYSICS PRACTICAL II	Core Practical- II			Р	4	6	75
Pre-Requisite							
Knowledge and handling of basic general and electronics e	-	of P	hysic	s			
Learning Objec			1	1 1	<u>,.</u>	<u> </u>	•
> To understand the concept of mechanical behavior	of material	s an	d ca	Icula	tion o	of same	e using
appropriate equations.To calculate the thermodynamic quantities and physic	al properties	ofr	nate	riale			
 To each and the inclined ynamic quantities and physic To analyze the optical and electrical properties of mat 		011	nau	1415.			
 To observe the applications of FET and UJT. 	C 11 u 15.						
> To study the different applications of operational amp	lifier circuits	5.					
> To learn about Combinational Logic Circuits and Seq			cuits	5			
Course Detail	S						
(Minimum of Twelve Experim							
 Determination of Young's modulus and Poisson's i 2. Determination of Stefan's constant of radiation fro. Measurement of Susceptibility of liquid - Quincke' 4. B-H curve using CRO Thickness of LG Plate Arc spectrum: Copper Determination of e/m - Millikan's method Miscibility measurements using ultrasonic diffracti Determination of Thickness of thin film Michelse Iodine absorption spectra Determination of Numerical Apertures and Acc Source. Measurement of Dielectricity - Microwave test be Hall Effect in Semiconductor. Determine the carrier mobility Interpretation of Vibrational spectra of a given ma Determination of I-V Characteristics and efficien GM counter – Absorption coefficient – Maximun IC 7490 as scalar and seven segment display usin Solving simultaneous equations – IC 741 / IC LM Op-Amp –Active filters: Low pass, High pass a worth filter Construction of Current to Voltage a 741. Construction of second order butterworth multipl Realization of analog to digital converter (ADC) IC74193 	m a hot body on method on Interferor eptance ang ench Hall coeffic tterial cy of solar c n range of β g IC7447 I324 and Band pa and Voltage e feedback m	mete le o cient rays ss fi to C aarro	r f opt , car lters urrer w ba	ical rier (Sec nt Co nd p	fibers conce cond (onvers ass fil	using entration Order) H tion usin	Laser n and Batter ng IC

24. BCD to Exce	ss- 3 and Excess 3 to BCD code conversion								
25. Study of bina	25. Study of binary up / down counters - IC 7476 / IC7473								
26. Shift register	26. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474								
	1. Practical Physics, Gupta and Kumar, PragatiPrakasan								
	2. Kit Developed for doing experiments in Physics- Instruction manual								
	R.Srinivasan K.R Priolkar, Indian Academy of Sciences								
TEXT BOOKS	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern								
	Economy Edition.								
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing								
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition								
	1. An advanced course in Practical Physics, D.Chattopadhayay								
	C.RRakshit, New Central Book Agency Pvt. Ltd								
	2. Advanced Practical Physics, S.P Singh, PragatiPrakasan								
DEFEDENCE	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &								
REFERENCE	Sons (Asia) Pvt.ltd								
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya								
	Publishing								
	5. Electronic Laboratory Primer a design approach, S. Poornachandra								
	B.Sasikala, Wheeler Publishing, New Delhi								

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2
CO2	Acquire knowledge of thermal behaviour of the materials	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1
CO5	Improve the analytical and observation ability in Physics Experiments	K4
CO6	Conduct experiments on applications of FET and UJT	K5
CO7	Analyze various parameters related to operational amplifiers	K4
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K3
CO10	Analyze the applications of counters and registers	K4
K1 - Re	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3

CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

DSE-3 A	BIO PHYSICS	IY	EAR – SECO	ND S	SEM	EST	FER			
Subject Code	Subject Name		Category	L	Т	Р	Credits	Inst. Hours	Marks	
23MPH2E1	BIO PHYSICS DSE-III A T 3 4 ' Pre-Requisites									
Fundamental c	oncepts of Physicsand Biology	equisit	es							
	Learning	Obiec	tives							
 To unders To unders To unders posed by To under 	stand the physical principles involved stand the fundamentals of macromole stand the biophysical function of men stand various kinds of radiation and t such radiations and the required prec rstand the physical principles behin l macromolecules.	cular st nbrane heir ef autions	ructures involv and neuron. fects on living	ved i syst	n pro em a	ind to	o knov	w the h		
UNITS	Course Details									
UNIT I:	CELLULAR BIOPHYSICS Arc. Prokaryotic and Eukaryotic cell – C Eukaryotic cell organization – C Extracellular matrix - Molecular me cardiac and neuronal cells.	ell size Compar	and shape – Fi tment & ass	ine s emb	truct lies	ture o men	of Pro nbrane	karyoti syste	c and m –	
UNIT II:	MOLECULAR BIOPHYSICS M acids, peptide bonds, primary, secon Nucleic acid structure: nucleosides conformation. Special Bio-macromolecules: Metal prions.	idary, to and nu	ertiary and qua cleotides, RNA	terna A str	ary s uctu	truct re, E	ures o DNA s	f protei tructure	ins e and	
UNIT III:	MEMBRANE AND NEURO BIO membranes and dynamics – Membr membranes – Ion channels. Nervous system: Organization of th membrane potential - Electrochemic	ane Caj le nervo	pacitors – Tran ous system –M	spor lemb	t acr orane	oss c pote	cell an	d organ – Origi	ns of	
UNIT IV:	RADIATION BIO PHYSICS X Radiation: Molecular effects of gan membranes, Effects on cell an macromolecules and proteins – Rad cancer.	nma rac d orga	liation, Radiati nelles – UV	on e ra	effect diati	ts on on:	nucle Effec	ic acids ts on	s and bio-	
UNIT V:	PHYSICAL METHODS IN E spectrophotometry – Optical Rotato ray Crystallography, Electron sp Chromatography: Thin layer chrom – Centrifugation: Differential Electrophoresis: Gel electrophoresis	ory Disj in reso atograp centrif	persion (ORD) onance (ESR) hy (TLC), Gas ugation, dens	– S ano s liqu sity	truct d bi uid c gra	ure l lolog hron ldien	Deterr ical a natogr t ce	nination applicat aphy (C	n: X- tions. GLC)	
UNIT VI:	PROFESSIONAL COMPONENT	Г S Exp Compe	ert Lectures, C titive Exam	Dnlir inati	ie Se ons,	emin E	ars - V Employ		rs on and	

		1. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013.								
		2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009								
TE		3. Biophysics, P. S. Mishra VK Enterprises, 2010.								
BOC	OKS	4. Biophysics, M. A Subramanian, MJP Publishers, 2005.								
		5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.								
		1. Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008).								
		2. Essential cell biology by Bruce Albert et al (Garland Science)								
REFER	RENCE	3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer								
BOC	OKS	Verlag, Berlin (1983).								
		4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A.								
		Tuszynski, (Springer science & business media).								
		5. Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek								
		1. General Bio:http://www.biology.arizona.edu/DEFAULT.html								
		2. Spectroscopy: <u>http://www.cis.rit.edu/htbooks/nmr/inside.htm</u>								
	EB	3. Electrophoresis: http://learn.genetics.utah.edu/content/labs/gel/								
SOUI	RCES	4. Online biophysics programs: http://mw.concord.org/modeler/								
		5. https://blanco.biomol.uci.edu/WWWResources.html								
COUR	SE OUT	COMES:								
Atthe	and of th	a course the student will be able to:								
CO1	Understa	nd the structural organization and function of living cells and should $\mathbf{K2}$, $\mathbf{K3}$								
	able to ar	pply the cell signaling mechanism and its electrical activities.								
		ension of the role of biomolecular conformation to function. K1								
		al understanding of the function of biological membranes and also to								
	-	ad the functioning of nervous system.								
		the effects of various radiations on living systems and how to prevent K1,								
		of radiations.								
CO5	Analyze	and interpret data from various techniques viz spectroscopy								
		graphy, chromatography etc., K4								
		r; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

DSE-3 2) AI	OVANCED OPTICS I Y	TEAR – SECON	ND S	EM	EST	ER						
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks				
23MPH2E2	ADVANCED OPTICS	DSE- III B		Т		3	4	75				
	Pre-Requi	sites				1		1				
Knowledge	e of ray properties and wave nature of ligh											
	Learning Ob						<u>.</u>					
of laser > To impar > To study > To differed	the concepts behind polarization and co t an extensive understanding of fiber and the working of different types of LASER entiate first and second harmonic generati	non-linear optic S on	S				ation a	spects				
	principles of magneto-optic and electro-	•	l its a	ıppli	catio	ns						
UNITS		rse Details		• ~		0	1 .					
UNIT 1:	Polarization by double refraction – Polarization by scattering – The phenomenon o double refraction – Normal and oblique incidence – Interference of polarized light											
UNIT II:	Quarter and half wave plates – Analysis of polarized light – Optical activityLASERS Basic principles – Spontaneous and stimulated emissions – Components ofthe laser – Resonator and lasing action – Types of lasers and its applications – Solidstate lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO2 laser –Chemical lasers – HCl laser – Semiconductor laser											
UNIT III:		erical aperture - spersion in mult s – Parabolic-in	- Att imoc idex	enua le op fibei	tion tical s – F	in opti fibers	cal fib – Ray	ers –				
UNIT IV:	NON-LINEAR OPTICS Basic princip generation – Phase matching – Third has	les – Harmonic monic generati	gene	ratio	n-s			onic				
UNIT V:	 dispersion in multimode step index fibers – Parabolic-index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor NON-LINEAR OPTICS Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light MAGNETO-OPTICS AND ELECTRO-OPTICS Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto-optic effect – Electro-optical effects – Stark effect – Inverse stark effect – Electric double refraction – Kerr electro-optic effect – Pockels electro-optic effect PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Indextinate and the start of the start											
UNIT VI:	effect											
TEXT BOOKS	 B. B. Laud, 2017, Lasers and N International (P) Ltd. AjoyGhatak, 2017, Optics, 6th Editio William T. Silfvast, 1996, Laser Fun York 	on – Linear (n, McGraw – H	Dptic	es, 3 duca	rd E	dition Pvt. L	td.	C				

	4. I. Destroy Dhysics of Light and Optics, a good (and freel) electronic heals							
	4. J. Peatros, Physics of Light and Optics, a good (and free!) electronic book							
	5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience,							
	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4 th Edition),							
	McGraw – Hill International Edition.							
REFEREN	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH, Varley GmbH.							
CE	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition, Cambridge							
BOOKS	University Press, New Delhi, 2011.							
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)							
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)							
	1. <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>							
WEB	2. https://www.youtube.com/watch?v=ShQWwobpW60							
SOURCE	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-applications.php							
S	4. <u>https://www.youtube.com/watch?v=0kEvr4DKGRI</u>							
	5. http://optics.byu.edu/textbook.aspx							
COUDCE	OUTCOMES.							

At the end of the course, the student will be able to:

CO1 Discuss the transverse character of light waves and different polarize phenomenon	ration K1							
CO2 Discriminate all the fundamental processes involved in laser devices a analyze the design and operation of the devices	nd to K2							
CO3 Demonstrate the basic configuration of a fiber optic – communication system and advantages								
CO4 Identify the properties of nonlinear interactions of light and matter	K4							
CO5 Interpret the group of experiments which depend for their action on an apmagnetics and electric field	pplied K5							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

<u>MAPPING WITH PROGRAM OUTCOMES:</u> Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	CROPROCESSOR 8085 AND	I YEAR – SECOND SEMESTER								
MIC	CROCONTROLLER 8051	1	1							
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks		
23MPH2E3	MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	DSE-IV A		Т		3	4	75		
	Pre-Rec	luisites								
Knowledge of r	number systems and binary operations									
	Learning (Objectives								
the meth	ide an understanding of the architectunods of interfacing I/O devices and me oduce 8085A programming and appli- ntroller 8051	mory to micropro	cesso	or	•					
UNITS		Course Details								
UNIT I:	8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller - Programmable communication interface - Programmable counter /interval timer.									
UNIT II:	 8085 INTERFACING APPLICATIONS Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain). 									
UNIT III:	8051 MICROCONTROLLERHAI Microcontroller Hardware: Pin-out 8 Internal ROM, Register set of 8051 – Ports and Circuits – External data memory, External data memory.	051, Central Proc - Memory organiz	essir atior	ng Un 1 of 8	it (C 051 -	PU), ir – Input	nternal /Outpu	RAM, It pins,		
UNIT IV:	8051 INSTRUCTION SET AND Addressing modes – Data moving external data memory, external ROI Data exchange instructions – Logica Rotate and swap operations – A decrementing, Addition, Subtraction Jump and CALL instructions: Jump – Programming.	(Data transfer) in M / program men al instructions: by Arithmetic instru n, Multiplication a and Call program	nstru nory, vte an oction and o	ction , PUS nd bi ns: H livisi	s: In SH an t leve Flags, on, I	structiond PO el logio , Incre Decima Call an	ons to P instru- cal ope ementin l arithi nd subr	Access uctions, rations, ng and metic – routines		
UNIT V:	INTERRUPT PROGRAMMING WORLD 8051 Interrupts – Interrupt Timer interrupts and programming – communication interrupts and progra interrupts, Software triggering of interface- Interfacing of Digital to A Stepper motor interface - Measurem Measurement of physical quantities(7)	vector table – En Programming ex ramming – Interr interrupt. LED Analog converter nent of electrical	ablin terna upt p Inter and 2 quar	ng and I har oriori face Analo ntities	d disa dwar ty in Seve og to	abling a e interr the 80 en segr Digita	rupts – 051 : 1 ment c 1 conv	rrupt – Serial Nested lisplay erter -		

UNIT VI:	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009). A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009). Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013). B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai publications New Delhi (2016). V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition S.Visvanathan Pvt, Ltd.
REFERENCE BOOKS	 Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008) Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008). Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.
WEB SOURCES	https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architecture.html http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/ https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/ http://www.circuitstoday.com/8051-microcontroller https://www.elprocus.com/8051-assembly-language-programming/

At the end of the course, the student will be able to:

C01	Gain knowledge of architecture and working of 8085 microprocessor.	K1							
CO2	Get knowledge of architecture and working of 8051 Microcontroller.	K1							
CO3	Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3							
CO4	Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4							
C05	Understand the different applications of microprocessor and microcontroller.	K3,K 5							
K1 - F	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1

CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

DSE-5 CHA MATERIALS				I YEAR – SECOND SEMESTER					
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	
23MPH2E4	CHARACTERIZATON OF MATERIALS								
	Pre-Requisit	es							
	of Heat and Thermodynamics, Basics of		ns, N	Aicro	oscop	oic sys	tems,		
Electrical mea	surements and Fundamentals of Spectro								
	Learning Obj								
	ke the students learn some important the	rmal analysis to	echn	ique	s nar	nely T	GA, D	TA,	
	nd TMA.								
	ke the students understand the theory of	•	on in	an o	ptica	ıl mici	oscope		
	introduce other specialized microscopic								
	ke the students learn and understand the	principle of wo	orkin	g of	elect	ron m	icrosco	pes	
	anning probe microscopes.	. 1 1	1	· 1	1	<i>.</i>	<i>.</i> .		
> To make the students understand some important electrical and optical characterization									
 techniques for semiconducting materials. To introduce the students the basics of x-ray diffraction techniques and some important 									
		iiraction techni	ques	s and	l son	ie imp	ortant		
spectro	oscopic techniques.								

UNITS	Course details
	THERM ALANALYSIS Introduction – thermogravimetric analysis (TGA) –
UNIT I	instrumentation – determination of weight loss and decomposition products –
	differential thermal analysis (DTA)- cooling curves – differential scanning
	calorimetry (DSC) - instrumentation - specific heat capacity measurements -
	determination of thermomechanical parameters.
	MICROSCOPIC METHODS Optical Microscopy: optical microscopy techniques –
	Bright field optical microscopy – Dark field optical microscopy – Dispersion staining
UNIT II	microscopy - phase contrast microscopy –differential interference contrast
	microscopy - fluorescence microscopy - confocal microscopy digital holographic
	microscopy - oil immersion objectives - quantitative metallography - image analyzer.
	ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY
UNIT III	SEM, EDAX, EPMA, TEM: working principle and Instrumentation – sample
	preparation –Data collection, processing and analysis- Scanning tunnelingmicroscopy
	(STEM) - Atomic force microscopy (AFM) - Scanning new field optical microscopy.
	ELECTRICAL METHODS AND OPTICAL CHARACTERISATION
	Two probe and four probe methods- van der Pauw method - Hall probe and
UNIT IV	measurement - scattering mechanism - C-V characteristics - Schottky barrier
	capacitance – impurity concentration – electrochemical C-V profiling – limitations.
	Photoluminescence – light – matter interaction – instrumentation – electroluminescence
	– instrumentation – Applications.
	X-RAY AND SPECTROSCOPIC METHODS
UNIT V	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy,
	ESR, NMR, NQR, XPS, AES and SIMS-proton induced X-ray Emission spectroscopy

	$(\mathbf{DIVE}) = (1 + (1 + 1) + (1 + (1 + 1)) + (1 + (1 $
	(PIXE) –Rutherford Back Scattering (RBS) analysis-application - Powder diffraction -
	Powder diffractometer -interpretation of diffraction patterns - indexing - phase
	identification - residual stress analysis - Particle size, texture studies - X-ray
	fluorescence spectroscopy - uses.
UNIT VI:	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on
	Industrial Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and Patriotism
	1. R. A. Stradling and P. C. Klipstain. Growth and Characterization of
	semiconductors. Adam Hilger, Bristol, 1990.
	2. J. A. Belk. Electron microscopy and microanalysis of crystalline materials.
	Applied Science Publishers, London, 1979.
	3 Lawrence F. Murr. Electron and Ion microscopy and Microanalysis
TEXT BOO	principles and Applications. Marcel Dekker Inc., New York, 1991
	4. D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private
	Limited, New Delhi, 2002.
	5. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang;
	CRC Press,(2008).
	1. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-
	Hall, (2001).
	2. Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic
DEFEDEN	Imaging, Wiley-Liss, Inc. USA, (2001).
REFEREN	J C) / J/ / J/ / J/
BOOKS	
	(monograph series), Volumes $49 - 51$, (2009). Volumes $49 - 51$, (2009).
	4. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).
	5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials,
	ButterworthHeinemann, (1993)
	1. <u>https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf</u>
WED COLU	2. <u>http://www.digimat.in/nptel/courses/video/113106034/L11.html</u>
WEB SOUR	
	4. <u>https://nptel.ac.in/courses/118104008</u>
COUDCE	5. <u>https://www.sciencedirect.com/journal/materials-characterization</u>

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1 Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.	K1, K3
CO2 The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.	K2
CO3 The working principle and operation of SEM, TEM, STM and AFM.	K2, K3
CO4 Understood Hall measurement, four –probe resistivity measurement, C-V, I-V, Electrochemical, Photoluminescence and electroluminescence experimental techniques with necessary theory.	K3, K4
CO5 The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications.	K4,K5
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

SEC-1 SOLA	SEC-1 SOLAR ENERGY UTILIZATION I YEAR – SECOND SEMESTER							
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23MPH2S1	SOLAR ENERGY UTILIZATION	SEC-I		Т		2	4	75
	Pre-Requisi	tes						
Basic knowled	ge of heat energy, way of transfer of heat	, solar energy, n	nater	rials	type	S		
	Learning Obje	ctives						
	art fundamental aspects of solar energy u							
To give	e adequate exposure to solar energy relate	d industries						
To harr	ness entrepreneurship skills							
	lerstand the different types of solar coord society	ells and channe	eliziı	ng t	hem	to t	he diff	erent
> To deve	elop an industrialist mindset by utilizing 1	renewable sourc	e of	ener	·gy			

UNITS	Course Details
UNIT I:	HEAT TRANSFER & RADIATION ANALYSIS Conduction, Convection and
	Radiation - Solar Radiation at the earth's surface - Determination of solar time -
	Solar energy measuring instruments.
UNIT II:	SOLAR COLLECTORS Physical principles of conversion of solar radiation into
	heat flat plate collectors - General characteristics - Focusing collector systems -
	Thermal performance evaluation of optical loss.
UNIT III:	SOLAR HEATERS Types of solar water heater - Solar heating system – Collectors
	and storage tanks – Solar ponds – Solar cooling systems.
	SOLAR ENERGY CONVERSION Photo Voltaic principles – Types of solar cells –
UNIT IV:	Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow
	of silicon solar cells- different approaches on the process- texturization, diffusion,
	Antireflective coatings, metallization.
	NANOMATERIALS IN FUEL CELL APPLICATIONS Use of nanostructures
UNIT V:	and nanomaterials in fuel cell technology - high and low temperature fuel cells,
	cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of
	Nano technology in hydrogen production and storage.
	Industrial visit – data collection and analysis - presentation
UNIT VI:	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars
	on Industrial Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOO	DKS 1. Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987.
	2. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and
	Applications", Mc Graw-Hill, 2010.
	3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems",
	Academic Press, London, 2009
	4. Tiwari G.N, "Solar Energy - Fundamentals Design, Modelling and
	applications, Narosa Publishing House, New Delhi, 2002
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd.,
	New Delhi, 1997.
REFEREN	ICE 1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)

BOOKS	 Solar energy thermal processes – John A.Drife and William. (1974) John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources,2005 John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th Edition, john Wiley and Sons, 2013 Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley
	and Sons,2007.
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f
SOURCES	<u>9a4fb</u>
	2. <u>https://books.google.vg/books?id=l-</u>
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read
	3. www.nptel.ac.in/courses/112105051
	4. <u>www.freevideolectures.com</u>
	5. <u>http://www.e-booksdirectory.com</u>

At the end of the course, the student will be able to:

CO1 Gained knowledge in fundamental aspects of solar energy utilization	K1
CO2 Equipped to take up related job by gaining industry exposure	K3
CO3 Develop entrepreneurial skills	K5
CO4 Skilled to approach the needy society with different types of solar cells	K4
CO5 Gained industrialist mindset by utilizing renewable source of energy	K2, K3
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

Paper 7 - QU	JANTUM MECHANICS – II	II YEAR	- TH	IRD	SE	MES	ΓER		
Subject	Subject Name	Cat egor y	L	Т	Р	Cre dits	st. ou	rs	Mar ks
Code	Subject Name	C ee			1		ul H		ΣŤ
23MPH3C1	QUANTUM MECHANICS – II	Core-VII		Т		5	6		75
	Pre-Requisites	5							
	postulates of Quantum mechanics, properti		itian	ope	erato	rs, lao	lder	opo	erators,
degeneracy, ar	ngular momentum techniques and commutatio								
	Learning Object								
	evelopment of the theory and the properties of								
> To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis									nalysis
	approximation.	n ta atradar a	£ :		+:	af an	atau		vitle tle e
	bendent Perturbation theory and its applicatio agnetic field	n to study c)1 ini	erac	tion	or an	aton	n w	in the
	the students a firm grounding in relativistic of	ulantum me	char	nics	with	n emn	hasis	or	Dirac
•	and related concepts		Cilui	nes,	** 111	r e mp	114515	01	
	luce the concept of covariance and the use	of Feynma	an gi	raphs	s fo	r depi	cting	di	ifferent
interactio	-	5	8	1		1 -	2	,	
UNITS		Details							
	SCATTERING THEORY Scattering ampl	itude – Cros	ss see	ction	s - l	Born a	ippro	xin	nation
UNIT I:	and its validity - Scattering by a screened								
	Partial wave analysis - Scattering length			-	-	•		W	ave –
	Optical theorem – Transformation from cent								
	PERTURBATION THEORY Time depe	*				•			
UNIT II:	harmonic perturbations – Fermi Golden rule								
	Coefficients – Adiabatic approximation – treatment of an atom with electromagne								
	radiation		u –	Sele		II I'ui	25 IC	1	uipoie
	RELATIVISTIC QUANTUM MECHAN	ICS Klein –	Gor	don	Eau	ation	– Ch	arg	e And
UNIT III:	Current Densities – Dirac Matrices – D								
	Interpretation Of Negative Energy States –								
	Moment Of An Electron Due To Spin			•					0
	DIRAC EQUATION Covariant form of Di	rac Equation	n - P	rope	rties	of the	e gan	nm	a
UNIT IV:	matrices – Traces – Relativistic invariance o	1				•		•	
	Current four vector – Bilinear covariant – Fe	ynman's the	eory	of p	ositr	on (El	leme	nta	ry
	ideas only without propagation formalism)				~1	• 1 4	~ 11		F 1
	CLASSICAL FIELDS AND SECOND (
UNIT V:	Lagrange equation – Hamiltonian formulat real and complex scalar fields – Creation,								
	states – Second Quantization of K-G field.	Ammination		u inu	moc	n ope	14101	5 –	TOCK
	PROFESSIONAL COMPONENTS Expe	rt Lectures	Onli	ine S	Semi	nars -	Wel	oin	ars on
UNIT VI:	Industrial Interactions/Visits, Competi					Empl			and
	Communication Skill Enhancement, Social						5		
	1. P. M. Mathews and K. Venkatesan,						lecha	anio	es,2nd
	Edition, Tata McGraw-Hill, New Delhi, 2								
	2. G. Aruldhas, Quantum Mechanics,	2nd Edi	tion,	Pr	enti	ce-Ha	ll o	f	India,
TEXT	NewDelhi,2009		_					_	
BOOKS	3. L. I. Schiff, Quantum Mechanics, 3:	rd Edition,	Inte	ernat	iona	I Stu	dent	Ec	lition,
	McGraw-Hill Kogakusha, Tokyo, 1968	-4 E 1'4'	NT	т	1 1 1	. 1. 1	TT		NI.
L	4. V. Devanathan, Quantum Mechanics, 1	st Edition,	Naro	osa I	rubl	Isning	Ηοι	ise,	INew

			Delhi, 200	05								
			Nouredin		Quantur	n mech	inics con	ncepts a	nd appl	ications	2nd Ed	ition
			Wiley, 20		Zummun			acepto a	na appi	ieunens,	2114 24	luion,
			P. A. M		, The P	rinciples	of Qua	antum N	Iechanic	s, 4th 1	Edition,O	xford
			Universit							<i>,</i>	, , , , , , , , , , , , , , , , , , ,	
			B.K.Agar				ntum Me	chanics,	7th repr	int, PHI	Learning	g Pvt
			Ltd., New					· · · · · ·	1	<i>,</i>	L L	
	EFER			Chandra		ni, Q	lantum	Electi	odynam	ics a	nd Pa	rticl
	NCE		Physics, 1	stedition,	I.K.Inter	national	Publishin	g house	Pvt.Ltd.,	2006		
R	OOKS		Ghatak a								plication	s, 4 ¹
			Edition, N						•			
		5.	E. Merzba	acher, Q	uantum N	Aechanic	s, 2nd ec	lition, Jo	hn Wiley	y and So	ns, New '	York
			1970									
		1.]	https://ocv	w.mit.ed	u/courses	/physics	/8-05-qua	antum-ph	ysics-ii-	fall-2013	3/lecture	
	WED	1	notes/MI	<u>F8_05F1</u>	3 Chap	<u>09.pdf</u>						
S	WEB OURC		http://ww	w.thphys	s.nuim.ie	/Notes/M	[P463/M]	P463_Ch	1.pdf			
5	OUKU S	3.	http://hep									
	3	4. 1	https://wv	vw.cmi.a	ic.in/~gov	vind/teac	hing/rel-	qm-rc13/	ˈrel-qm-r	otes-gk.	pdf	
		5.	https://we	b.mit.ed	u/dikaise	r/www/F	dsAmSc	i. <u>pdf</u>				
			DUTCON									
			of the cou									
CO			e concept		-	ory such	as partial					K
	wave	analysis	and Borr	1 approxi	mation							
CO	2 Give	e a firm g	rounding	in relativ	vistic qua	ntum me	chanics,	with emp	phasis or	n Dirac e	quation a	$\operatorname{nd}_{\mathbf{K}}$
	re	lated con	cepts									
CO			lativistic	*				•				K
			the pheno									K
CO			concept o	of covaria	ance and	the use o	f Feynm	an graph	s for dep	oicting di	fferent	K
		actions										K
CO5			an underst	tanding o	of field qu	lantizatio	on and th	e explana	ation of t	he scatte	ring	K
	matr											
			2 – Under			•	Analyze	; K5 - Ev	aluate			
			ITH PRC									
			comes (C									
Г	specifi		nes (PSO)		^	1	,					1
╞	001	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
F	<u>CO1</u>	3	3	3	3	3	3	3	3	3	3	

CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

Paper 8 - NUMERICAL METHODS AND COMPUTER PROGRAMMING

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Catego ry	L	Т	Р	Credit s	Inst. Hours	Marks
23MPH3C 2	NUMERICAL METHODS AND COMPUTER PROGRAMMING	Core- VIII		Т		5	6	75

Pre-Requisites

Prior knowledge on computer and basic mathematics
Learning Objectives
> To make students to understand different numerical approaches to solve a problem.
> To understand the basics of programming

UNITS	Course Details
UNIT I:	SOLUTIONS OF EQUATIONS Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials –Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.
UNIT II:	LINEAR SYSTEM OF EQUATIONS Simultaneous linear equations and their matrix representation– Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.
UNIT III:	INTERPOLATION AND CURVE FITTING Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation – Curve fitting – Method of least squares – Fitting a polynomial.
UNIT IV:	DIFFERENTIATION, INTEGRATION AND SOLUTION OF DIFFERENTIAL EQUATIONS Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss- Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and RungaKutta methods.
UNIT V:	PROGRAMMING WITH C Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.

	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars -
UNIT VI:	Webinars on Industrial Interactions/Visits, Competitive Examinations,
	Employable and Communication Skill Enhancement, Social Accountability and
	Patriotism
	1. V. Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition.
	PHI, New Delhi
	2. M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical Methods for
	Scientific and Engineering Computation,
	3rd Edition, New Age Intl., New Delhi3. S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi
TEXT BOOKS	4. F. Scheid, 1998, Numerical Analysis, 2nd Edition, Schaum's series,
	McGraw Hill, New York
	5. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992,
	Numerical Recipes in FORTRAN,
	2nd Edition, Cambridge Univ. Press
	1. S. D. Conte and C. de Boor, 1981, Elementary Numerical analysis-an
	algorithmic approach, 3rd Edition, McGraw Hill,)
	2. B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical analysis, 5th
REFERENCE	Edition, Addison-Wesley, MA.
BOOKS	3. B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied Numerical
	Methods, Wiley, New York.
	 S. S. Kuo, 1996, Numerical Methods and Computers, Addison-Wesley. V. Rajaraman, Programming in FORTRAN / Programming in C, PHI,
	New Delhi
	1. https://www.scribd.com/doc/202122350/Computer-Oriented-Numerical-
	Methods-by-V-RajaRaman
WEB	2. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/reference
SOURCES	spapers.aspx?referenceid=1682874
SUURCES	3. <u>https://nptel.ac.in/course/122106033/</u>
	4. https://nptel.ac.in/course/103106074/
	5. <u>https://onlinecourses.nptel.ac.in/noc20_ma33/preview</u>

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1Recall the transcendental equations and analyze the different root finding	
methods. Understand the basic concept involved in root finding procedure such as	K1, K2
Newton Raphson and Bisection methods, their limitations.	
CO2 Relate Simultaneous linear equations and their matrix representation Distinguish	V 5
between various methods in solving simultaneous linear equations.	NJ
CO3 Understand, how interpolation will be used in various realms of physics and	
Apply to some simple problems Analyze the newton forward and backward	K2, K3
interpolation	
CO4 Recollect and apply methods in numerical differentiation and integration. Assess	K3,
the trapezoidal and Simson's method of numerical integration.	K4
CO5 Understand the basics of C-programming and conditional statements.	K2
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

Paper 9 - E	LECTROMAGNETIC THEORY	II YEA	R - 1	ΓHI	RD S	SEME	STER	
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marke
23MPH3C3	ELECTROMAGNETIC THEORY	Core-IX		Т		4	6	75
	Pre-Requisite		1		1	1		
Knowledge	of different coordinate systems, Laplace'	s equation,	con	duct	ing	& no	n-cond	uct
	c definitions in magnetism, propagation of c							
	Learning Object							
 method To under To comingauges, To assignment electron 	tire knowledge about boundary conditions of separation of variables rstand Biot – Savart's law and Ampere's cir prehend the physical ideas contained in conservation laws imilate the concepts of propagation, p nagnetic waves	cuital law Maxwell's o polarization,	equa	tions	s, Co	oulom	b & L	ore
To grasp	the concept of plasma as the fourth state of							
UNITS	Cou	rse Details						
UNIT I	ELECTROSTATICS Boundary v Boundary conditions and uniquene dimension – Solution in Cartesian an solutions for boundary value problems Polarization and displacement vectors a uniform field – Molecular pole Electrostatic energy in the presence of	ss theorem d spherical p s. - Boundary arizability a	– oolar cone and	Lapl coo ditio elec	ace ordina ns - l strica	equat ates – Dielec 1 sus	ion in Examp etric spl ceptibil	th oles
UNIT II	static energy - Magnetic induction a Boundary conditions - Uniformly mag	localized c at distributio and magnetic gnetized sphe	urren n in c fie ere.	nt d an e eld in	istrik xtern n ma	nal fie	- Ma ld - Ma opic m	gno agn edi
UNIT II	I: MAXWELL EQUATIONS Far displacement current - Maxwell's equinvariance - Wave equation and pli gauges - Energy and momentum of th Conservation laws for a system of char	ations - Vect ane wave s e field - Poy	tor a oluti nting	nd so on- g's th	calar Cou eore	poter lomb m - L	ntials - (and L orentz f	Gai ore
UNIT IV:	WAVE PROPAGATION Plane waves circular polarization, reflection and refra conducting medium - Propagation of wave Inhomogeneous wave equation and retard source - Oscillating electric dipole	ction at a g s in a rectang	plan gula	e int r way	terfac ve gu	ce - V iide.	Waves	in
UNIT V:	ELEMENTARY PLASMA PHYSICS magneto-hydrodynamic equations - Ele shielding problem - Plasma confinent hydrodynamic waves - Alfven waves and t	ctron plasm ent in a	na o mag	scill gneti	ation	s - '	The D	eby

	source - Osemating electric dipole								
	ELEMENTARY PLASMA PHYSICS The Boltzmann Equation - Simplified								
UNIT V:	magneto-hydrodynamic equations - Electron plasma oscillations - The Debye								
	shielding problem - Plasma confinement in a magnetic field - Magneto-								
	hydrodynamic waves - Alfven waves and magnetosonic waves.								

UNIT VI-	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars						
UNITVI: on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism 1. D. J. Griffiths, 2002, Introduction to Electrodynamics, 3 rd Edition, Prentice-Hall of India, New Delhi. 2. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3 rd edition, Narosa Publishing House, New Delhi. 3. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi. 4. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford. 5. Gupta, Kumar and Singh, Electrodynamics, S.Chand & Co., New Delhi 1. W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism, Addison Wesley, London. 2. J. D. Kraus and D. A. Fleisch, 1999, Electromagnetics with Applications, 5 th Edition, WCB McGraw-Hill, New York. 3. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied, Kolkata. 4. P. Feynman, R. B. Leighton and M. Sands, 1998, The Feynman Lectures on Physics, Vols. 2, Narosa Publishing House, New Delhi. 5. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA.							
	Communication Skill Enhancement, Social Accountability and Patriotism						
	3 rd Edition, Prentice-Hall of India, New Delhi.						
	Electromagnetic Theory, 3 rd edition, Narosa Publishing House, New Delhi.						
	Delhi.						
	· · · ·						
	5. Gupta, Kumar and Singh, Electrodynamics, S.Chand & Co., New Delhi						
	1. W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism,						
CE	3. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied,						
DUUKS							
	5. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University						
	1. <u>http://www.plasma.uu.se/CED/Book/index.html</u>						
	2. <u>http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html</u>						
WEB	3. <u>http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html</u>						
SOURCES	4. <u>http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tutorials/</u>						
	5. <u>https://www.cliffsnotes.com/study-guides/physics/electricity-and-</u>						
	magnetism/electrostatics						

<u>COURSE OUTCOMES:</u> At the end of the course the student will be able to:

CO1	Solve the differential equations using Laplace equation and to find solutions for	V1 V5
	noundary value proplems	-
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various physical problems	K2, K3
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in different media	K3
CO4	Apply the concept of propagation of EM waves through wave guides in optical fiber	
	communications and also in radar installations, calculate the transmission and reflection coefficients of electromagnetic waves	кз, к4
	Investigate the interaction of ionized gases with self-consistent electric and magnetic fields	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Paper - 10 – PHYSICS Practical – III II YEAR - THIRD SEMESTER										
Subject Code	Subject Name		Category	L	Т	Р	Credits	Inst. Hours	Marks	
23MPH3P1	PHYSICS PRACTICAL III	[Core Practical- III			Р	4	6	75	
	Pre-Req	uisites								
	in differential equation and linear a	•								
Basic knowledge o	of operating system and computer f									
	Learning (
 The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN To equip the computational skill using various mathematical tools. To apply the software tools to explore the concepts of physical science. To approach the real time activities using physics and mathematical formulations. 										
	Course									
 Newton I Newton I Newton I Curve-fit Numerica Numerica Numerica Numerica Algorithm Numerica Algorithm Numerica Mumerica Algorithm Numerica Solution I Solution Solution Solution Solution Runge K Newton's Trapezoi Simpson Simpson Simpson Gaussian Giraffe's Determir Butler frid 	's 1/3 rule 's 3/8 rule rule a quadrature method (2 point and 3 proot square method for solving alg nation of Thickness of air film S	w char im, Flo ithm, Flo gorithm le with le with afferen ifferen Methoc aphson by Gau by Eul- ing firs point f gebraic	t and output ow chart and low chart and low chart and Algorithm, orithm, Flow tial equation tial equation tial equation d – Method – ss elimination t order Ordi	t. I outj nd ou t and Flov w ch ns by ns by on m nary	put. utput d out w cha art a / the / the / the	gut. art ar nd o Eule Run d.	tial E	hod wit utta me quation	thod s	

- 25. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 26. Measurement of Magnetic Susceptibility Guoy's method
- 27. GM counter Feather's analysis: Range of Beta rays
- 28. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 29. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 30. Molecular spectra CN bands
- 31. Determination of Planck Constant LED Method
- 32. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 33. Construction of square wave generator using IC 555 Study of VCO
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Construction of Encoder and Decoder circuits using ICs.
- 36. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 37. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 38. Study of Modulus Counter
- 39. Construction of Multiplexer and Demultiplexer using ICs.
- 40. 8-bit addition and subtraction, multiplication and division using microprocessor 8085
- 41. Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending order using microprocessor 8085
- 42. Code conversion (8-bit number): a) Binary to BCD b) BCD to binary using microprocessor 8085
- 43. Addition of multi byte numbers, Factorial using microprocessor 8085
- 44. Clock program- 12/24 hours-Real time application Six Digits Hexa Decimal and Decimal Counters using microprocessor 8085
- 45. Interfacing of LED Binary up/down counter, BCD up/down counter and N/2N up/down counter using microprocessor 8085
- 46. Interfacing of seven segment display using microprocessor 8085
- 47. Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves using microprocessor 8085
- 48. Interfacing of DC stepper motor Clockwise, Anti-clockwise, Angular movement and Wiper action using microprocessor 8085
- 49. Interfacing of Temperature Controller and Measurement using microprocessor 8085
- 50. Interfacing of Traffic light controller using microprocessor 8085

e or morning	or frame light controller using incroprocessor 6005
	1. Numerical methods using Matlab – John Mathews & Kurtis Fink,
	Prentice Hall, New Jersey 2006
	2. Numerical methods in Science and Engineering - M.K. Venkataraman,
	National Publishing Co. Madras, 1996
	3. V. Rajaraman, 1993, Computer Oriented Numerical Methods, 3 rd Ed.
TEXT BOOKS	(Prentice-Hall, New Delhi.
	4. M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for
	Scientific and Engineering Computation, 3 rd Ed. New Age International,
	New Delhi.
	5. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New
	Delhi.
	1. S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An
	Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill).
REFERENCE	2. B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th
BOOKS	Edition, Addison Wesley, Reading, MA.
	3. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical
	Methods (Wiley, New York.

4.	S.S. Kuo, 1996, Numerical Methods and Computers, Addison - Wesley,
5.	London. V. Rajaraman,Programming in FORTRAN/ Programming in C, PHI,
	New Delhi.

At the end of the course the student will be able to:

CO1	Program with the C Program/ FORTRAN with the C or any other high level language	K1
CO2	Use various numerical methods in describing/solving physics problems.	K4
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific problems.	K5
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	K5
		K3
CO6	Process, analyze and plot data from various physical phenomena and interpret their meaning	K4
CO7	Identify modern programming methods and describe the extent and limitations of computational methods in physics	1/1
CO8	Work out numerical differentiation and integration whenever routine are not applicable.	K5
CO9	Apply various interpolation methods and finite difference concepts.	K4
	Understand and apply numerical methods to find out solution of algebraic equation using different methods under different conditions, and numerical solution of system of algebraic equation.	K1, K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

DSE- 5. 1.P TECHNOL		S OF NANOSCIENCE AND	II YEAR	t – 1	THI	RD	SEM	ESTE	ER				
Subject Code		Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks				
23MPH3E1		SICS OF NANOSCIENCE AND TECHNOLOGY	DSE-V A		Т		4	4	75				
		Pre-Requisit	es										
Basic knowled	lge in Sol	id State Physics											
		Learning Obje	ctives										
> Physics of	of Nanos	cience and Technology is conce		e stu	ıdy,	crea	ation,	manip	oulation				
and appli	cations a	t nanometer scale.			•			-					
		sic knowledge about nanoscience		gy.									
		ures and properties of nanomater											
1		owledge about synthesis methods	and character	rizat	ion	tech	nique	s and i	ts				
applicatio													
UNIT	S	Course Details	NOCOLENC		A T			DIOL	OCM				
UNIT	I:	FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials - Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.											
UNIT I	11:	PROPERTIES OF NANO Nanomaterials: Melting points, - Mechanical behavior:Elast superplastic behavior - Optical Quantum size effects - Electric and dielectrics - Magnetic pro magnetic semiconductor (DMS	specific heat ic properties properties: - S al properties perties – sup	cap – Surfa - Cc	acity str ace] ondu	y, an engt Plasi ctivi	id latt h - mon I ity, Fe	ice con ductil Resona erroele	nstant ity - ince – ectrics				
UNIT I	SYNTHESIS AND FABRICATION INIT III: Synthesis eposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography – Nanomanipulator. Signature							- Wet lasma					
UNIT IV:CHARACTERIZATION TECHNIQUES Powder X-ray diffraction - X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy - Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) - Vibrating sample Magnetometer.						рру – (1) - scopy							
UNIT	V:	APPLICATIONS OF NAM based on optical and physica Nano-biosensors. Nano Electro read/write heads - Carbon application: Air purification,	l properties onics: Nanobo Nanotube	- El ots - Em	lectr - dis itter	ocho play s -	emica / scre – Ph	l sens ens - lotocat	ors – GMR alytic				

	cancer cells – biological tags - drug delivery - photodynamic therapy -
	Energy: fuel cells - rechargeable batteries - supercapacitors -
	photovoltaics.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONA	1 /
COMPONENTS	6 Communication Skin Enhancement, Social Accountability and Patriousin
	6. A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-
	Hill Publishing Co. (2012).
	7. Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad,
	Narosa Publishing House Pvt Ltd., (2010).
TEVT	8. Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and
TEXT	A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).
BOOKS	9. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic
	Press, (2002). 10. Nanotechnology and Nanoelectronics, D.P. Kothari,
	V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt.Ltd, New Delhi. (2018)
	6. Nanostructures and Nanomaterials – HuozhongGao – Imperial College Press (2004).
	7. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing
	Inc. USA
	8. Nano particles and Nano structured films; Preparation, Characterization and
REFERENCE	Applications, J.H.Fendler John Wiley and Sons. (2007)
BOOKS	9. Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al., Universities
	Press. (2012)
	10. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr.
	Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics
	Pentagon Press, New Delhi.
	1. www.its.caltec.edu/feyman/plenty.html
	2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
WEB	3. http://www.understandingnano.com
SOURCES	4. http://www.nano.gov
	5. <u>http://www.nanotechnology.com</u>
	5. http://www.nanoteennology.com

At the end of the course, the student will be able to:

	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	
	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	
	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	· ·
	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	171
C05	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	K3
	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

	YSTAL GROWTH AND T	I YEAR – THIRD SEMESTER								
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks		
23MPH3E2	CRYSTAL GROWTH AND THIN FILMS	DSE-V B		Т		4	4	75		
		Pre-Requisite	6							
undamentals of	Crystal Physics									
		Learning Object	ives							
To acquire	the knowledge on Nucleation	<u> </u>		vth						
<u>+</u>	and the Crystallization Princi	5	0							
	rious methods of Crystal gro		Ĩ							
➢ To understa	and the thin film deposition r	nethods								
> To apply th	e techniques of Thin Film Fo	ormation and thickne	ess Measu	iremen	t					
UNITS		Cour	se Detail	5						
	CRYSTAL GROWTH	KINETICS Basic	Concept	ts, Nuc	cleatio	n and Ki	netics of	growth		
	Ambient phase equilibri									
UNIT I:	Thomson - Gibbs - Type	s of Nucleation - Fo	ormation	of criti	cal N	ucleus - C	lassical t	heory of		
	Nucleation - Homo and l									
	from vapour phase soluti			itaxial	growt	h - Growtl	n mechar	nism and		
	classification - Kinetics o									
	CRYSTALLIZATION									
UNIT II:	Classes of Crystal system									
	Super solubility - express									
	Miers TC diagram - Sol							ı - Slov		
	cooling and solvent evapo									
	GEL, MELT AND VAP									
UNIT III:	of Gel techniques - Vario									
	growth and advantages - method - Horizontal gra									
	growth - Physical vapour							ur phase		
	THIN FILM DEPOSI							thin fil		
	preparation, Thermal ev									
UNIT IV:	· · ·	A ·		.		*		.		
	Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour deposition methods, Se Gel spin coating, Spray pyrolysis, Chemical bath deposition.									
	THIN FILM FORMAT		-		kness	Measurer	nent Nuc	leation.		
	Film growth and structu							,		
UNIT V:	Nucleation, Nucleation									
	comparison. Structure of	Thin Film, Roll of	substrate	, Roll o	of film	n thickness	, Film th	ickness		
	measurement - Interfere									
	techniques.									
UNIT VI:	PROFESSIONAL CO									
UNII VI:	Industrial Interactions/V	-			Emplo	yable and	Commu	inication		
	Skill Enhancement, Socia	l Accountability and	l Patriotis	sm						
	1. V. Markov Crystal		rs: Funda	mental	ls of l	Nucleation	, Crystal	Growth		
	and Epitaxy (2004) 2		_							
TEXT	2. A. Goswami, Thin F									
BOOKS	3. M. Ohora and R. C.									
	4. 4. D. Elwell and H. J	. Scheel, "Crystal G	rowth fro	m Hig	h Tem	perature S	olution"			

	5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA.							
	1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)							
	2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes".							
REFERENCE	3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications.							
BOOKS	H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons,							
	New York							
	5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.							
	1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrIO8kZl1D1Jp							
WEB	2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7KeTLUuBu3WF							
SOURCES	3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m							
SUURCES	4. <u>https://www.youtube.com/playlist?list=PLXHedI-xbyr8xIl_KQFs_R_oky3Yd1Emw</u>							
	5. https://www.electrical4u.com/thermal-conductivity-of-metals/							

At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1					
CO2	Understand the Crystallization Principles and Growth techniques	K2, K4					
CO3	Study various methods of Crystal growth techniques	K3					
CO4	Understand the Thin film deposition methods	K2					
CO5	Apply the techniques of Thin Film Formation and thickness Measurement	K3, K4					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

SEC -2 SOLID WASTE MANAGEMENT II YEAR – THIRD SEMESTER										
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks		
23MPH3S1	SOLID WASTE MANAGEMENT	SEC-II		Т		2	2	75		
Pre-Requisites										
Basic knowledge of	of solid waste and its type									
 To gain inc To harness To analyze 	Learni sic knowledge in solid waste ma lustry exposure and be equipped entrepreneurial skills. the status of solid waste manage e the importance of healthy prac	to take up a job. ement in the nearby areas.								
UNITS		Course Details								
UNIT I:	Hazardous Waste: Resource	SOLID WASTE MANAGEMENT Introduction - Definition of solid waste - Types – Hazardous Waste: Resource conservation and Renewal act – Hazardous Waste: Municipal Solid waste and non-municipal solid waste.								
UNIT II:	SOLID WASTE CHARACTERISTICS Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation									
UNIT III:		TOOLS AND EQUIPMENT Tools and equipment - Transportation - Disposal techniques - Composting and land filling technique								
UNIT IV:	ECONOMIC DEVELOPMI protection Linking SWM and climate cha		vel	opm	ent a	nd e	envi	ronmental		
UNIT V:	INDUSTRIAL VISIT SW presentation	M Industrial visit – data	ı c	ollec	ction	an	d a	inalysis -		
UNIT VI:	PROFESSIONAL COMPO Industrial Interactions/Visit Communication Skill Enhance	ts, Competitive Examin	nati	ons,	E	mpl				
TEXT BOOKS	 Handbook of Solid Waste Management /Second Edition, George Tchobanoglous, McGraw Hill (2002). Prospects and Perspectives of Solid Waste Management, Prof. B BHosett, New Age International (P) Ltd (2006). Solid and Hazardous Waste Management, Second Edition, M.N Rao, BS Publications/ BSPBooks (2020). Integrated Solid Waste Management Engineering Principles and Management, Tchobanoglous, McGraw Hill (2014). Solid Waste Management (SWM), Vasudevan Rajaram, PHI learning private 									
REFERENCE BOOKS	 limited, 2016 Municipal Solid Waste Management, Christian Ludwig, Samuel Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012 Solid Waste Management Bhide A. D Indian National Scientific Documentation Centre, New Delhi Edition 1983 ASIN: B0018MZ0C2 Solid Waste Techobanoglous George; Kreith, Frank McGraw Hill Publication, 									

	New Delhi 2002, ISBN 9780071356237
	4. Environmental Studies Manjunath D. L. Pearson Education Publication, New
	Delhi, 20061SBN-I3: 978-8131709122
	5. Solid Waste Management Sasikumar K. PHI learning, New Delhi, 2009 ISBN
	8120338693
	1. https://www.meripustak.com/Integrated-Solid-Waste-Management-Engineering-
	Principles-And-Management-Issues-125648
	2. <u>https://testbook.com/learn/environmental-engineering-solid-waste-management/</u>
WEB SOURCES	3. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsA-
WED SOUKCES	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXjJ1iACq30Kofoa
	<u>AmFsEALw_wcB</u>
	4. <u>https://images.app.goo.gl/tYiW2gUPfS2cxdD28</u>
	5. <u>https://amzn.eu/d/5VUSTDI</u>

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1
CO2	Equipped to take up related job by gaining industry exposure	K5
CO3	Develop entrepreneurial skills	K3
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Paper 11 - NU	UCLEAR AND PARTICLE PHYSICS	II YEA	<u>R -</u>	FOI	JRT	H SE	MEST	ER
Subject Code	Subject Name	Category	L	Т	Р	Cr edi ts	Inst. Hou rs	Ma rks
23MPH4C1	NUCLEAR AND PARTICLE PHYSICS	Core-XI		Т		5	6	75
	Pre-Requisites	5			1			
Knowledge of b	pasic structure of atom and nucleus.							
	Learning Object	ives						
 Imparts an nuclear rea Provides st 	students to the different models of the nucl in in-depth knowledge on the nuclear force actions and their principles tudents with details of nuclear decay with re-	e, experimente, elevant theorem	nts t ries	o sti	ıdy i	it and	the typ	pes of
A	udents to the Standard Model of Elementar		nd F	liggs	s bos	on		
UNITS	Cours	e Details						
UNIT I:	NUCLEAR MODELS Liquid drop mo mass parabola –Mirror Pair - Bohr Whee orbit coupling – magic numbers – angul magnetic moment – Schmidt model – Mottelson collective model – rotational an	eler theory o lar momenta electric Qu	of fis a and adra	ssion d par pole	i – sl rity o mo	nell m of gro	odel – und sta	spin- tes –
UNIT II:	NUCLEAR FORCES Nucleon – nuclear of nuclear forces – ground state of deuter nuclear forces – Yukawa potential – nu theory – spin dependence of nuclear fr symmetry – isospin formalism.	eron – Excha cleon-nucle	ange on s	For For	ces ring	- Meso – eff	on theo ective 1	ry of ange
UNIT III:	NUCLEAR REACTIONS Kinds of nuclear value – Partial wave analysis of scatterial length – Compound nuclear reactions – Wigner one level formula – Direct reacting formula.	ing and read Reciprocity	tion theo	cro orem	ss se – R	ction esona	 scatt nces – 	ering Breit
UNIT IV:	NUCLEAR DECAY Beta decay – Corr beta decay - Comparative Half-life –Ferr and forbidden decay — neutrino physic decay – multipole radiations – Angular isomerism – angular momentum and parity	ni Kurie Plo cs – Helicit Correlation	ot – 1 y - - int	nass Pari erna	of r ty vi	neutrir Iolatio	io – alle n - Ga	owed mma
UNIT V:	ELEMENTARY PARTICLES Classifi Interaction and conservation laws – Fami Quantum Numbers – Strangeness – Hype groups-Gell Mann matrices– Gell Mann G Standard model of particle physics – Higg	lies of eleme rcharge and Okuba Mass gs boson.	entar Qua forr	y pa irks - nula	rticle -SU -Qua	es – Is (2) an irk Mo	ospin – d SU (3 odel.	3)
UNIT VI:	PROFESSIONAL COMPONENTS Ex on Industrial Interactions/Visits, Com Communication Skill Enhancement, Soci	petitive Ex al Accounta	ami bilit	natio y ano	ons, d Pat	Empl riotist	oyable	oinars and
TEXT BOOKS	 D. C. Tayal – Nuclear Physics – Hima K. S. Krane – Introductory Nuclear Pl R. Roy and P. Nigam – Nuclear Physic S. B. Patel – Nuclear Physics – An int Publishers (2011) 	hysics – Joh lcs – New A	n W ge P	iley ublis	& So shers	ons (20 s (1990	5)	vt Ltd

	5. S. Glasstone - Source Book of Atomic Energy - Van Nostrand Reinhold
	Inc.,U.S 3rd Revised edition (1968)
	1. L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973)
	2. H. A. Enge – Introduction to Nuclear Physics – Addison Wesley, Publishing
REFERE	Company. Inc. Reading. New York, (1974).
NCE	3. Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002)
BOOKS	4. Bernard L Cohen - Concepts of Nuclear Physics - McGraw Hill Education
	(India) Private Limited; 1 edition (2001)
	5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	1. http://bubl.ac.uk/link/n/nuclearphysics.html
	2. <u>http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp://www.s</u>
WED	cholarpedia.org/article/Nuclear Forces
WEB SOUDCES	3. <u>https://www.nuclear-power.net/nuclear-power/nuclear-reactions/</u>
SOURCES	4. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.html
	5. https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactiv
	edecay.html
COUDCE O	

At the end of the course, the student will be able to:

	Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.	K1, K5
	Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K2, K3
CO3	Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	K3
	Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.	K3, K4
	Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

Paper 12- SPECTROSCOPY

II YEAR - FOURTH SEMESTER

Subj Co	• I	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23MP	PH4C	SPECTROSCOPY	Core-XII		Т		5	6	75
		Pre-Requisite	S			•			
Thorou	ıgh un	derstanding of electromagnetic spectrum	n, mathem	atica	l al	oiliti	es, ki	nowledg	ge of
molecu	les, the	ir structure, bond nature, physical and chen		our					
		Learning Objec							
		nprehend the theory behind different spectro					0 1:00		C
		ow the working principles along with an ov	verview of c	onst	ructi	on o	t ditte	erent ty	pes of
^		eters involved	a in D & D						
		lore various applications of these technique spectroscopic techniques for the qualitation		mont	itatis		nalvei	s of w	arious
	· · ·	compounds.	uive alle q	uam	nan	i a	iiarysi	5 01 V	arious
		nd this important analytical tool							
	NITS		rseDetails						
U.	NITI:	Rigid Rotor (Diatomic Molecules)-red isotopic substitution - Non rigid rotate of Spectral Lines- Polyatomic molecu molecules - Hyperfine structure and Instrumentation techniques – block dia Spectra- Stark effect- Problems.	or – centrifu ules – linea quadrupole	gal c r – s mo	listor symr men	rtion netri t of	const c asy linear	ant- Int mmetric molec	ensity c top ules -
U	NITII:	INFRA-RED SPECTROSCOPY V zero-point energy- Anharmonic os combinations- Diatomic Vibrating Fundamental modes of vibration of H vibrational spectra- IR Spectropho Spectrometer) – Fourier Transform vibrational spectra– remote analysis by National Remote Sensing Centre (N	cillator – g Rotator- I ₂ O and CO otometer In Infrared Sp of atmosph	fun PR 2 -In 12 -In 15tru 15tr	dame bra itrod ment osco gase	ental inch uctic tation py s lik	s, ov – P on to a n (D - Inte e N2C	vertones QR br opplicat ouble rpretati O using	and canch- ion of Beam on of FTIR
UN	NITIII:	RAMAN SPECTROSCOPY Theory molecular polarizability – polarizabil effect - rotational Raman spectra of l Stokes and anti-stokes line- SR branch exclusion principle- determination of and block diagram -structure determin using IR and Raman techniques - FT R	v of Raman ity ellipsoid inear molec h -Raman a N ₂ O struc nation of p caman spect	Sca d - 0 ule - ctivi ture lanar	tterin Quan - syn ty of -Ins r and opy-	ng - ntum nmet f H ₂ (trum trum SER	Class theor ric to D and entati n-plan	ical the ry of R p moleo CO_2 .N on tech ar mole	cory – Caman cule – Autual nnique ecules
UN	NITIV:	RESONANCE SPECTROSCOPY I magnetic field - Population of Energy times - Double resonance- Chemica Hydrogen nuclei - Indirect Spin -Sp organic molecules - Instrumentation to	gy levels - al shift and pin Interact	Ları l its tion	nor me – ir	prec asur nterp	essior ement retatio	- Relax : - NM on of s	xation IR of simple

	Chemical industries- MRI Scan
	Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct Dipole-
	Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure
	(Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation -
	Medical applications of ESR
	UV SPECTROSCOPY Origin of UV spectra - Laws of absorption – Lambert
	Bouguer law – Lambert Beer law - molar absorptivity – transmittance and
UNITV:	absorbance - Color in organic compounds- Absorption by organic Molecule -
	Chromophores -Effect of conjugation on chromophores - Choice of Solvent and
	Solvent effect - Absorption by inorganic systems - Instrumentation - double beam
	UV-Spectrophotometer -Simple applications
	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars -
UNIT VI:	Webinars on Industrial Interactions/Visits, Competitive Examinations,
	Employable and Communication Skill Enhancement, Social Accountability and
	Patriotism
	1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular
	Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.
	2. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy,
	Prentice–Hall of India, New Delhi.
	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications,
TEXT BOOKS	New Age International Publication.
	4. B.K. Sharma, 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7 th Edition),
	New Age International Publishers.
	1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India,
	New Delhi.
	2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal
	Society of Chemistry, RSC, Cambridge.
REFERENCE	3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and
BOOKS	Hall, New York.
	4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill,
	New Delhi.
	5. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation,
	SpringerLink.
	1. <u>https://www.youtube.com/watch?v=0iQhirTf2PI</u>
	2. <u>https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5</u>
WEB	3. <u>https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-</u>
SOURCES	$\frac{8j\text{Eee}}{2}$
	4. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>
	5. <u>https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-</u>
	introduction-XCWRu

<u>COURSE OUTCOMES:</u> At the end of the course the student will be able to:

	Understand fundamentals of rotational spectroscopy, view molecules as elastic rotors and interpret their behaviour. Able to quantify their nature and correlate them with their characteristic properties.		
CO2	Understand the working principles of spectroscopic instruments and theoretical background of IR spectroscopy. Able to correlate mathematical process of	K2, K3	

Fourier transformations with instrumentation. Able to interpret vibrational spectrum of small molecules.	
CO3 Interpret structures and composition of molecules and use their knowledge of Raman Spectroscopy as an important analytical tool	K5
CO4 Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a substances	K4
CO5 Learn the electronic transitions caused by absorption of radiation in the UV/Vis region of the electromagnetic spectrum and be able to analyze a simple UV spectrum.	K1, K5

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

PAPER 13	Project with Viva-Voce							
Subject Code	Subject Name	Category	L	Т	Р	Cr edi ts	Inst. Hou rs	Mar ks
23MPH4PR	Project with Viva-Voce					6	10	75

DSE-6 1. MA	TERIALS SCIENCE	II YEAR - FOURTH SEMESTER							
Subject Code	Subject Name	Category L		LT		Credits	Inst. Hours	Marks	
23MPH4E1	MATERIALS SCIENCE	MATERIALS SCIENCEDSE-VI AT44					75		
		e-Requisites							
Basic kn	owledge on different types of mat	terials							
	Learn	ning Objectives	6						
🕨 To gain kn	owledge on optoelectronic materi	als							
To learn ab	oout ceramic processing and advan	nced ceramics							
To underst	and the processing and application	ns of polymeric	mat	erial	s				
	owledge on the fabrication of con	· ·							

To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
	OPTOELECTRONIC MATERIALS Importance of optical materials – properties: Band
	gap and lattice matching – optical absorption and emission – charge injection, quasi-Fermi
UNIT I:	levels and recombination – optical absorption, loss and gain. Optical processes in quantum
	structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation
	in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton
	quenching.
UNIT II	CERAMIC MATERIALS Ceramic processing: powder processing, milling and sintering –
	structural ceramics: zirconia, almina, silicon carbide, tungsten carbide – electronic ceramics –
	refractories – glass and glass ceramics
	POLYMERIC MATERIALS Polymers and copolymers – molecular weight measurement –
	synthesis: chain growth polymerization - polymerization techniques - glass transition
UNIT III	temperature and its measurement – viscoelasticity – polymer processing techniques –
	applications: conducting polymers, biopolymers and high temperature polymers.
	COMPOSITE MATERIALS Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix
UNIT IV	composites – carbon/carbon composites: fabrication and applications.
	NEW MATERIALS Shape memory alloys: mechanisms of one-way and two-way shape
	memory effect, reverse transformation, thermo-elasticity and pseudo-elasticity, examples and
UNIT V:	applications -bulk metallic glass: criteria for glass formation and stability, examples and
	mechanical behavior - nanomaterials: classification, size effect on structural and functional
	properties, processing and properties of Nano crystalline materials, single walled and multi
	walled carbon nanotubes
	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on
UNIT VI:	Industrial Interactions/Visits, Competitive Examinations, Employable and Communication
	Skill Enhancement, Social Accountability and Patriotism
	1. Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures,
	Cambridge University Press, 2007
TEXT	2. P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008.
BOOKS	3. V. Raghavan, 2003, Materials Science and Engineering, 4 th Edition, Prentice- Hall
DOORS	India, New Delhi(For units 2,3,4 and 5)
	4. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill
	5. M. Arumugam, 2002, Materials Science, 3 rd revised Edition, Anuratha Agencies
REFERE	1. B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience

NCE	and Nanotechnology. Springer- Verlag, 2012.								
BOOKS	2. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and Super								
	Elastic Alloys: Technologies and Applications. Wood head Publishing Limited, 2011.								
	3. Lawrence H. VanVlack, 1998. Elements of Materials Science and Engineering, 6 th								
	Edition, Second ISE reprint, Addison-Wesley.								
	4. H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to Principles of								
	Materials Science, 2 nd Edition, Springer.								
	5. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge University								
	Press, 2008.								
	1. <u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u>								
WEB	2. https://nptel.ac.in/courses/112104229								
SOURC	3. https://archive.nptel.ac.in/courses/113/105/113105081								
ES	4. <u>https://nptel.ac.in/courses/113/105/113105025/</u>								
E9	https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_								
	Science)/Electronic Properties/Lattice Vibrations								

At the end of the course, the student will be able to:

CO1 Acquire knowledge on optoelectronic materials	K1
CO2Be able to prepare ceramic materials	K3
CO3 Be able to understand the processing and applications of polymeric materials	K2, K3
CO4 Be aware of the fabrication of composite materials	K5
CO5 Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials	5 K1
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

DSE-6 2. CC	DSE-6 2. CONDENSED MATTER PHYSICS				II YEAR -FOURTH SEMESTER							
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks				
23MPH4E2	CONDENSED MATTER PHYSICS	DSE-VI B		Т		4	4	75				
Pre-Requisites												

Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.

Learning Objectives

- > To describe various crystal structures, symmetry and to differentiate different types of bonding.
- To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- > To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- > Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNITS	Course Details
UNIT I:	CRYSTAL PHYSICS Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Atomic Packing Factor- Crystal diffraction - Bragg's law – Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).
UNIT II:	LATTICE DYNAMICS Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.
UNIT III:	THEORY OF METALS AND SEMICONDUCTORS Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - de Hass-van Alphen effect .
UNIT IV:	MAGNETISM Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.
UNIT V:	SUPERCONDUCTIVITY Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect – Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer

	(BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS.
UNIT VI:	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley H. P. Myers, 1998, Introductory SolidState Physics, 2nd Edition, Viva Book, New Delhi.
REFERE NCE BOOKS	 J. S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia H. M. Rosenburg, 1993, The SolidState, 3rd Edition, OxfordUniversity Press, Oxford. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi.
WEB SOURCES	 <u>http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html</u> <u>http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html</u> <u>https://www.britannica.com/science/crystal</u> <u>https://www.nationalgeographic.org/encyclopedia/magnetism/</u> <u>https://www.brainkart.com/article/Super-Conductors_6824/</u>

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

C01	Student will be able to list out the crystal systems, symmetries allowed in a system and also the diffraction techniques to find the crystal structure	K1
CO2	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.	K1, K2
	Student will be able to comprehend the heat conduction in solids	К3
	Student will be able to generalize the electronic nature of solids from band theories.	
CO5	Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.	К5
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	VAGE AND WASTE WATER NT AND REUSE	II YEAR – FOURTH SEMESTER									
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks			
23MPH4S1	SEWAGE AND WASTE WATER TREATMENT AND REUSE	SEC-III		Т		2	4	75			
		Requisites									
Basic knowle	edge of classification of sewage and		d its	har	mful	effects.					
		g Objectives									
	in basic knowledge in sewage and v			ent	proc	edures					
	in industry exposure and be equipped	ed to take up jo	ob.								
	rness entrepreneurial skills.										
	To analyze the status of sewage and waste water management in the nearby areas.										
	nsitize the importance of healthy practices in waste water management.										
UNITS	RECOVERY & REUSE OF WA	Course Deta		0 D			<u> </u>				
UNIT I:	Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector contro measures in industries - chemical and biological methods of vector eradication										
UNIT II:	DISINFECTION Disinfection: In - UV radiation - Chlorination - Ar and Bactericidal - factors affecting	ntisepsis - Ster									
UNIT III:	CHEMICAL DISINFECTION Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs)										
UNIT IV:	PHYSICAL DISINFECTION Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.										
UNIT						ž					
V:	INDUSTRIAL VISIT Industrial visit – data collection and analysis - presentation										
UNIT VI:	PROFESSIONAL COMPONEN IndustrialInteractions/Visits,CommunicationSkill Enhancemen	Competitive	E	Exan	ninat	tions, E	Employab				

	1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC press
	(2013)
	2. Design of Water and Wastewater Treatment Systems (CV-424/434),
	ShashiBushan, Jain Bros (2015)
ТЕХТ	3. Integrated Water Resources Management, Sarbhukan M M, CBS
BOOKS	PUBLICATION (2013)
	4. C.S. Rao, Environmental Pollution Control Engineering, New Age International,
	2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw
	Hill Publishing Company Ltd., 2012.

· · · · · · · · · · · · · · · · · · ·	
	1. Handbook of Water and Wastewater Treatment Plant Operations, Frank. R
	Spellman, CRC Press, 2020
	2. Wastewater Treatment Technologies, MritunjayChaubey, Wiley, 2021.
REFEREN	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher Edu.,
	2002.
CE BOOKS	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd Edn.,
	McGraw Hill Inc., 1989
	5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing,
	2010.
	1. https://www.google.co.in/books/edition/Drinking Water DisinfectionTechniques/
	HVbNBQAAQBAJ?hl=en
	2.https://www.meripustak.com/Integrated-Solid-Waste-Management-
	Engineering-Principles-And-Management-Issues-125648?
	3.https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-
	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAm
	FsEALw wcB
WEB	4. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-
SOURCES	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ
	jxHCOVH3QXjJ1iACq30KofoaAmFsEALw wcB
	5. https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-
	424/dp/B00IG2PI6K/ref=asc df B00IG2PI6K/?tag=googleshopmob-
	21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=
	g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=
	&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-
	890646066127&psc=1&ext vrnc=hi
COURSE	OUTCOMES:

At the end of the course, the student will be able to:

CO1 Gained knowledge in solid waste management	K1							
CO2 Equipped to take up related job by gaining industry exposure								
CO3 Develop entrepreneurial skills								
CO4 Will be able to analyze and manage the status of the solid wastes in the nearby are	as K4							
CO5 Adequately sensitized in managing solid wastes in and around his/her locality								
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

IXI - IXemember , IX2 - Onderstand, IX3 - Typiy, IX4 - Maryze, F									iaic,	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2